Advanced Search
LYU Shuqiang, KIM Jihoon, CHO Haeyong. Connection performance of friction element welding between aluminum and high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 8-13. DOI: 10.12073/j.hjxb.20210310002
Citation: LYU Shuqiang, KIM Jihoon, CHO Haeyong. Connection performance of friction element welding between aluminum and high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 8-13. DOI: 10.12073/j.hjxb.20210310002

Connection performance of friction element welding between aluminum and high strength steel

More Information
  • Received Date: March 09, 2021
  • Available Online: January 10, 2022
  • In order to find out the difficulty of the bonding between aluminum alloy and high strength steel material, ensured the high quality bonding between them, friction element welding was used to implement the bonding between 6061-T6 aluminum alloy and high strength steel DP1470. By observed the macro morphology and microstructure of the joint, tested the joint mechanical properties and compared the joint failure forms, the variation law of bonding performance of joint obtained by friction element welding was studied. The results show that rotating speed is an important factor affecting the welding quality. During the welding test, the speed control range is 5000−8000 r/min. The tensile strength of the joint will increase at first and then decrease with the increase of the rotating speed. When the rotating speed reaches 7000 r/min, the shear load of the joint can reach 6.3 kN, the surface of the joints are flat without cracks and pores. When the failure mode of the joint is the fracture failure which occurs on the aluminum alloy plates at the joint, the tensile strength of the joint will increase higher and the welding quality will be better. Therefore, aluminum alloy and high strength steel can achieve high-quality joining through friction element welding.
  • 马潇天, 闫德俊, 孟祥晨, 等. 铝/钢搅拌摩擦焊金属间化合物调控研究进展[J]. 焊接学报, 2020, 41(7): 1 − 11. doi: 10.12073/j.hjxb.20200617001

    Ma Xiaotian, Yan Dejun, Meng Xiangchen, et al. Progress on the control of intermetallic compounds in aluminum/steel friction stir welding[J]. Transactions of the China Welding Institution, 2020, 41(7): 1 − 11. doi: 10.12073/j.hjxb.20200617001
    黄健康, 何翠翠, 石玗, 等. 铝/钢异种金属焊接接头界面Al-Fe金属间化合物生成及其热力学分析[J]. 吉林大学学报(工学版), 2014, 44(4): 1037 − 1041.

    Huang Jiankang, He Cuicui, Shi Yu, et al. Thermodynamic analysis of Al-Fe intermetallic compounds formed by dissimilar joining of aluminum and galvanized steel[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(4): 1037 − 1041.
    Booth G, Olivier C, Westgate S, et al. Self-piercing riveted joints and resistance spot welded joints in steel and aluminium[C]//International Body Engineering Conference & Exposition. SAE Technical Paper, 2000: 268.
    Sønstabø J K, Holmstrøm P H, Morin D, et al. Macroscopic strength and failure properties of flow drill screw connections[J]. Journal of Materials Processing Technology, 2015, 222: 1 − 12. doi: 10.1016/j.jmatprotec.2015.02.031
    贺地求, 刘杭琪, 赖瑞林. MS1400/DP980钢的电阻点焊的工艺性能分析[J]. 焊接学报, 2018, 39(4): 104 − 108. doi: 10.12073/j.hjxb.2018390105

    He Diqiu, Liu Hangqi, Lai Ruilin. Analysis on resistance spot welding process performance of MS1400 and DP980[J]. Transactions of the China Welding Institution, 2018, 39(4): 104 − 108. doi: 10.12073/j.hjxb.2018390105
    Gibson B T, Lammlein D H, Prater T J, et al. Friction stir welding: Process, automation, and control[J]. Journal of Manufacturing Processes, 2014, 16(1): 56 − 73. doi: 10.1016/j.jmapro.2013.04.002
    Taban E, Gould J E, Lippold J C. Dissimilar friction welding of 6061-T6 aluminum and AISI 1018 steel: Properties and microstructural characterization[J]. Materials and Design, 2010, 31(5): 2305 − 2311. doi: 10.1016/j.matdes.2009.12.010
    王希靖, 张亚州, 李经纬, 等. 铝/镀锌钢搅拌摩擦铆焊接头组织与力学性能[J]. 材料科学与工艺, 2015, 23(2): 103 − 108. doi: 10.11951/j.issn.1005-0299.20150218

    Wang Xijing, Zhang Yazhou, Li Jingwei, et al. Microstructure and mechanical properties of friction stir rivet welding joint between aluminum and galvanized steel[J]. Materials Science and Technology, 2015, 23(2): 103 − 108. doi: 10.11951/j.issn.1005-0299.20150218
    Kimapong K, Watanabe T. Lap joint of A5083 aluminum alloy and SS400 steel by friction stir welding[J]. Materials Transactions, 2005, 46(4): 835 − 841. doi: 10.2320/matertrans.46.835
    Xian Xirui, Ma Yunwu, Shan He, et al. Single-sided joining of aluminum alloys using friction self-piercing riveting (F-SPR) process[J]. Journal of Manufacturing Processes, 2019, 38: 319 − 327. doi: 10.1016/j.jmapro.2019.01.037
    黄体方. 铝/钢铆接辅助搅拌摩擦焊接头界面行为及承载特性分析[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    Huang Tifang. Interfacial behavior and mechanical properties analysis of Al/steel joint by riveting assisted friction stir welding [D]. Harbin: Harbin Institute of Technology, 2017.
    Skovron J D, Ruszkiewicz B J, Mears L, et al. Investigation of the cleaning and welding steps from the friction element welding process[C]//International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2017, 50725: 1−14.
    Oliveira J P, Ponder K, Brizes E, et al. Combining resistance spot welding and friction element welding for dissimilar joining of aluminum to high strength steels[J]. Journal of Materials Processing Technology, 2019, 273: 116192. doi: 10.1016/j.jmatprotec.2019.04.018
    林健, 赵海峰, 雷永平, 等. 钢铝搅拌摩擦焊搭接接头的机械结合与冶金结合方式[J]. 机械工程学报, 2015, 51(16): 106 − 112. doi: 10.3901/JME.2015.16.106

    Lin Jian, Zhao Haifeng, Lei Yongping, et al. Mechanical and metallurgical bonding in friction stir welding joint of steel-aluminum dissimilar materials[J]. Journal of Mechanical Engineering, 2015, 51(16): 106 − 112. doi: 10.3901/JME.2015.16.106
    Khodir S A, Shibayanagi T, Naka M. Microstructure and mechanical properties of friction stir welded AA2024-T3 aluminum alloy[J]. Materials Transactions, 2006, 47(1): 185 − 193. doi: 10.2320/matertrans.47.185
    Cederqvist L, Reynolds A P. Factors affecting the properties of friction stir welded aluminum lap joints[J]. Welding Journal, 2001, 80(12): 281 − 287.
    江超, 陈辉, 车小莉, 等. 高速列车 A6005A 铝合金焊接接头断裂韧性研究[J]. 材料科学与工艺, 2013, 21(2): 55 − 60. doi: 10.11951/j.issn.1005-0299.20130210

    Jiang Chao, Chen Hui, Che Xiaoli, et al. Fracture toughness of welded joints of A6005A aluminum alloy for high speed train[J]. Materials Science &Technology, 2013, 21(2): 55 − 60. doi: 10.11951/j.issn.1005-0299.20130210
  • Related Articles

    [1]ZHANG Yukun, CHEN Jichun, ZHANG Jinsong. Microstructure and shear strength of the C/SiC and Q235 brazing joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(7): 78-82. DOI: 10.12073/j.hjxb.20191010001
    [2]WU Na, LI Yajiang, WANG Juan. Microstructure and shear strength of high-temperature brazed joint of Super-Ni/NiCr laminated composite using Ni-Cr-Si-B filler metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(1): 9-12,36.
    [3]ZOU Jiasheng, ZENG Peng, XU Xiangping. Interfacial structure and strength of Si3N4 ceramics joint brazed with amorphous filler metal and Cu layer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (11): 47-50.
    [4]LU Wei, ZHANG Ning, SHI Yaowu, LEI Yongping. Effect of loading rate on shear strength of SnAgCu solder joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (9): 57-60.
    [5]MENG Gongge, LI Zhengping. Shear strength and fracture surface analysis of BiAgNiCuGe/Cujoint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (10): 45-48.
    [6]CHEN Jianfeng, CAO Pingzhou, DONG Xianfeng. Experiment on tensile and shear strength of front fillet welded joint post-high-temperatures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (9): 81-84.
    [7]MENG Gongge, LI Caifu, YANG Tuoyu, CHEN Leida. Effect of germanium on shearing strength and fracture surface of SnAgCu/Cu soldering joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (9): 59-62.
    [8]LI Zhuoran, LIU Bin, FENG Jicai. Effect of Ni on wettability and shear strength of joints of Ag20CuZnSnP filler metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (9): 19-22.
    [9]XUE Song-bai, HU Yong-fang, YU Sheng-lin, WU Yu-xiu. Effects of thermal cycling on shear strength and microstructures of soldered joints of ceramic ball grid array package[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (6): 1-4.
    [10]XUE Song-bai, HU Yong-Fang, YU Sheng-lin. Study on shear strength of soldered joints of BGA packaging devices[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (10): 62-64.

Catalog

    Article views (568) PDF downloads (88) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return