Advanced Search
LI Jihong, ZHANG Yunlong, DU Mingke, ZHANG Min, LI Jing, LEI Longyu. Effect of alloy elements on the interface connection mechanism and properties of copper/ steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 34-41. DOI: 10.12073/j.hjxb.20201102001
Citation: LI Jihong, ZHANG Yunlong, DU Mingke, ZHANG Min, LI Jing, LEI Longyu. Effect of alloy elements on the interface connection mechanism and properties of copper/ steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 34-41. DOI: 10.12073/j.hjxb.20201102001

Effect of alloy elements on the interface connection mechanism and properties of copper/ steel welded joints

More Information
  • Received Date: November 01, 2020
  • Available Online: April 19, 2021
  • In this paper, gas metal arc welding tests were carried out on dissimilar metals of T2 copper and 304 stainless steel using HS201 solid wire, Cu-Si flux-cored wire and Cu-Ni flux-cored wire. This paper mainly studied the effects of alloy elements (Si, Ni) on the connection mechanism, microstructure and mechanical properties of T2 copper/304 stainless steel welded joints. The results show the welds formed by 3 groups of welding wire are good, and there are no macroscopic defects in the cross section of the welded joint. The obvious transition regions is found at the interface between the steel base material and the weld of HS201 and Cu-Si welded joints, and the microstructure can be divided into iron-rich phase and copper-rich phase. There is no obvious transition region in the Cu-Ni joint, and there are more iron-rich phases in the weld, mostly in the form of dendrite. The Si and Ni elements can significantly improve the impact toughness of the weld, and the impact absorbing energy of Cu-Ni weld is the highest (AKV=54 J), which can reach more than 83% of the copper base metal. In the weld zone of Cu-Ni welded joint, the area with high hardness value accounts for the largest proportion, followed by Cu-Si welded joint.
  • 刘越, 张太正, 孙爱新, 等. 铜/钢双金属复合制备工艺技术研究现状[J]. 材料导报, 2015, 29(15): 10 − 14, 21.

    Liu Yue, Zhang Taizheng, Sun Aixin, et al. Research status of compounding technology for Cu/steel bimetal[J]. Materials Reports, 2015, 29(15): 10 − 14, 21.
    王瑞, 石玗, 李广, 等. 镍对铜/不锈钢GTAW接头导电性及腐蚀性能的影响[J]. 焊接学报, 2019, 40(12): 53 − 58.

    Wang Rui, Shi Yu, Li Guang, et al. Effect of nickel on conductivity and corrosion of copper/stainless steel GTAW joints[J]. Transactions of the China Welding Institution, 2019, 40(12): 53 − 58.
    Wang Y, Gao Y, Li Y, et al. Review of preparation and application of copper-steel bimetal composites[J]. Emerging Materials Research, 2019, 4(8): 538 − 551.
    张建良, 焦克新, 王一杰, 等. 铜钢复合冷却壁的研发及应用[N]. 世界金属导报, 2018-09-25(B02).

    Zhang Jianliang, Jiao Kexin, Wang Yijie, et al. Development and application of copper steel composite cooling stave[N]. World Metals, 2018-09-25(B02).
    Meng Y, Li X, Gao M, et al. Microstructures and mechanical properties of laser-arc hybrid welded dissimilar pure copper to stainless steel[J]. Optics and Laser Technology, 2019, 111: 140 − 145. doi: 10.1016/j.optlastec.2018.09.050
    张日恒. 铜-钢异种金属材料的焊接工艺[J]. 压力容器, 2003(9): 24 − 26.

    Zhang Riheng. Welding procedure of copper/steel different materials[J]. Pressure Vessel Technology, 2003(9): 24 − 26.
    Cheng Z, Huang J, Ye Z, et al. Microstructures and mechanical properties of copper-stainless steel butt-welded joints by MIG-TIG double-sided arc welding[J]. Journal of Materials Processing Technology, 2019, 265: 87 − 98. doi: 10.1016/j.jmatprotec.2018.10.007
    周利, 蒋智华, 雷淑贵, 等. 铜/钢异种金属搅拌摩擦焊搭接工艺[J]. 焊接学报, 2019, 40(4): 22 − 27.

    Zhou Li, Jiang Zhihua, Lei Shugui, et al. Process study for friction stir lap welding of copper/steel dissimilar metals[J]. Transactions of the China Welding Institution, 2019, 40(4): 22 − 27.
    Chen S, Huang J, Xia J, et al. Influence of processing parameters on the characteristics of stainless steel/copper laser welding[J]. Journal of Materials Processing Technology, 2015, 222: 43 − 51. doi: 10.1016/j.jmatprotec.2015.03.003
    Gladkovsky S V, Kuteneva S V, Sergeev S N. Microstructure and mechanical properties of sandwich copper/steel composites produced by explosive welding[J]. Materials Characterization, 2019, 154: 294 − 303. doi: 10.1016/j.matchar.2019.06.008
    Singh G, Saxena R K, Pandey S. An examination of mechanical properties of dissimilar AISI 304 stainless steel and copper weldment obtained using GTAW[J]. Materials Today: Proceedings, 2020, 26: 2783 − 2789. doi: 10.1016/j.matpr.2020.02.579
    彭迟, 程东海, 陈益平, 等. 铜/钢异种材料等离子弧焊接头显微组织分析[J]. 材料科学与工艺, 2015, 23(4): 105 − 110.

    Peng Chi, Cheng Donghai, Chen Yiping, et al. Microstructure of dissimilar material joint with T2 copper and steel 304 for plasma arc welding[J]. Materials Science and Technology, 2015, 23(4): 105 − 110.
    Ding H, Huang Q, Liu P, et al. Fracture toughness, breakthrough morphology, microstructural analysis of the T2 copper-45 steel welded joints[J]. Materials, 2020, 13(2): 488 − 503. doi: 10.3390/ma13020488
    Jo H R, Kim J T, Hong S H, et al. Effect of silicon on microstructure and mechanical properties of Cu-Fe alloys[J]. Journal of Alloys and Compounds, 2017, 707: 184 − 188. doi: 10.1016/j.jallcom.2016.12.352
    付俊. 铜-钢异种材料激光焊接研究[D]. 上海: 上海交通大学, 2009.

    Fu Jun. Laser welding for copper-steel joint[D]. Shanghai: Shanghai Jiao Tong University, 2009.
  • Related Articles

    [1]WANG Xiaowei, ZHANG Bin, ZENG Ruchuan, YAN Zhaoyang, CHEN Shujun. Microstructure and mechanical properties of welds at keyhole closures in variable-polarity plasma arc welding of Al alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 1-6. DOI: 10.12073/j.hjxb.20230402001
    [2]JIN Xiaokun, ZHANG Shichao, DIAO Wangzhan, DU Jinfeng, LIANG Jun, ZHANG Zheng. Effect of aging time on the microstructure and mechanical properties of the SP2215 steel welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 95-105. DOI: 10.12073/j.hjxb.20221028006
    [3]MA Xianglong, CAO Rui, DONG Hao, WANG Caiqin, ZHANG Longge, YAN Yingjie. Microstructure and mechanical properties of 316L stainless steel/T2 copper hot isostatic bonding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 58-62. DOI: 10.12073/j.hjxb.20220522002
    [4]LIN Zhicheng, ZHAO Yunqiang, YAN Dejun, LIU Li, DONG Chunlin. Study on microstructure and mechanical properties of new generation high-magnesium aluminum alloy cross-welded joints by friction stir welding-friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 24-30. DOI: 10.12073/j.hjxb.20220510001
    [5]LIU Huijie, GAO Yisong, ZHANG Quansheng, ZHAO Huihui. Microstructure and mechanical properties of friction stir welded joint of 2A14-T4 aluminum alloy thick plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 20-24, 42. DOI: 10.12073/j.hjxb.20210615001
    [6]WANG Hu, JIN Likun, PENG Yun. Microstructure and mechanical properties of joints of a new Al-Mg-Mn-Er alloy by TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 74-79. DOI: 10.12073/j.hjxb.20190924002
    [7]ZHOU Li, ZHANG Renxiao, SHU Fengyuan, HUANG Yongxian, FENG Jicai. Microstructure and mechanical properties of friction stir welded joint of Q235 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 80-84. DOI: 10.12073/j.hjxb.2019400076
    [8]XUE Zhiqing, HU Shengsun, ZUO Di, SHEN Junqi. Microstructural characteristics and mechanical properties of laser-welded copper and aluminum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (10): 51-54.
    [9]QIAO Jisen, YU Jiangrui, GOU Ningnian, YUAN Xiaoer. Development of microstructure influence on mechanical properties of fusion welding joints of aluminium alloy 2A12[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (9): 5-8.
    [10]YANG Yang, CHEN Zhongping, LI Dahe, LIU Xiaohui. Microstructure and mechanical properties of Monel alloy copper explosive clad interface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (8): 53-56.

Catalog

    Article views (491) PDF downloads (48) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return