Citation: | XIAO Wenbo, HE Yinshui, YUAN Haitao, MA Guohong. Synchronous real-time detection of weld bead geometry and the welding torch in galvanized steel GAMW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 78-82. DOI: 10.12073/j.hjxb.20201021001 |
Jahanzaib M, Hussain S, Wasim A, et al. Modeling of weld bead geometry on HSLA steel using response surface methodology[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(5): 2087 − 2098.
|
Neelamegam C, Sapineni V, Muthukumaran V, et al. Hybrid intelligent modeling for optimizing welding process parameters for reduced activation ferritic-martensitic (RAFM) steel[J]. Journal of Intelligent Learning Systems and Applications, 2013, 5(1): 39 − 47.
|
Om H, Pandey S. Effect of heat input on dilution and heat affected zone in submerged arc welding process[J]. Sadhana, 2013, 38(6): 1369 − 1391. doi: 10.1007/s12046-013-0182-9
|
Chen C, Fan C, Cai X, et al. Investigation of formation and microstructure of Ti-6Al-4V weld bead during pulse ultrasound assisted TIG welding[J]. Journal of Manufacturing Processes, 2019, 46: 241 − 247. doi: 10.1016/j.jmapro.2019.09.014
|
Xiong J, Zhang G. Online measurement of bead geometry in GMAW-based additive manufacturing using passive vision[J]. Measurement Science and Technology, 2013, 24(11): 115103. doi: 10.1088/0957-0233/24/11/115103
|
He Y, Li D, Pan Z, et al. Dynamic modeling of weld bead geometry features in thick plate GMAW based on machine vision and learning[J]. Sensors, 2020, 20(24): 7104 − 7122. doi: 10.3390/s20247104
|
Yang L, Fan J, Liu Y, et al. Automatic detection and location of weld beads with deep convolutional neural networks[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1 − 12.
|
Xiao Jun, Wen Tao, Chen Shujun, et al. Teleoperation strategies research for collaborative welding systems based on virtual reality[J]. China Welding, 2020, 29(2): 38 − 47.
|
Kalwasiński D. The position for experimental research to simulate sense of touch[J]. Mechanik, 2016, 89(7): 718 − 720.
|
潘海鸿, 尹华壬, 梁旭斌, 等. 可调整焊枪姿态直线摆弧路径算法研究[J]. 组合机床与自动化加工技术, 2019, 11: 37 − 41.
Pan Haihong, Yin Huaren, Liang Xubin, et al. Research on the algorithm of linear swing arc path with adjustable welding torch attitude[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2019, 11: 37 − 41.
|
余卓骅, 胡艳梅, 何银水. 薄板机器人自动焊接焊枪三维偏差的有效提取[J]. 焊接学报, 2019, 40(11): 49 − 53. doi: 10.12073/j.hjxb.2019400287
Yu Zhuohua, Hu Yanmei, He Yinshui. Effective three-dimensional deviation extraction of the welding torch for robotic arc welding with steel sheets[J]. Transactions of the China Welding Institution, 2019, 40(11): 49 − 53. doi: 10.12073/j.hjxb.2019400287
|
Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91 − 110. doi: 10.1023/B:VISI.0000029664.99615.94
|
[1] | HUANG Hongxing, WU Di, ZENG Da, PENG Biao, SUN Tao, ZHANG Peilei, SHI Haichuan. Quantitative evaluation of spatter in adjustable ring mode laser welding based on In-situ OCT measurement[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 128-132. DOI: 10.12073/j.hjxb.20240715002 |
[2] | WANG Jie, ZHANG Zhifen, BAI Zijian, ZHANG Shuai, QIN Rui, WEN Guangrui, CHEN Xuefeng. Welding forming quality monitoring based on CNN-LSTM hybrid drive[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 121-127. DOI: 10.12073/j.hjxb.20240707002 |
[3] | BAI Zijian, ZHANG Zhifen, WANG Jie, ZHANG Shuai, SU Yu, WEN Guangrui, CHEN Xuefeng. Dilution rate monitoring of DED based on a spectral physical feature perception network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 95-100. DOI: 10.12073/j.hjxb.20240701002 |
[4] | ZHU Ming, LEI Runji, WENG Jun, WANG Jincheng, SHI Yu. MIG weld seam tracking system based on image automatic enhancement and attention mechanism deep learning[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 90-94. DOI: 10.12073/j.hjxb.20240718002 |
[5] | MA Jiawei, SUN Jingbo, CHI Guanxin, ZHANG Guangjun, LI Xinlei. Weld identification and robot path planning algorithm based on stereo vision and YOLO deep learning framework[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 45-49. DOI: 10.12073/j.hjxb.20240720001 |
[6] | WANG Rui, GAO Shaoze, LIU Weipeng, WANG Gang. A lightweight and efficient X-ray weld image defect detection method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(7): 41-49. DOI: 10.12073/j.hjxb.20230630003 |
[7] | BAI Zijian, LI Zhiwen, ZHANG Zhifen, QIN Rui, ZHANG Shuai, XU Yaowen, WEN Guangrui. On-line monitoring of TIG welding quality of nuclear power plug tube based on arc spectrum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 8-19. DOI: 10.12073/j.hjxb.20230610002 |
[8] | XU Donghui, MENG Fanpeng, SUN Peng, ZHENG Xuchen, CHENG Yongchao, MA Zhi, CHEN Shujun. Online monitoring of GMAW welding defect based on deep learning[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 114-119. DOI: 10.12073/j.hjxb.20230117002 |
[9] | WANG Rui, HU Yunlei, LIU Weipeng, LI Haitao. Defect detection of weld X-ray image based on edge AI[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 79-84. DOI: 10.12073/j.hjxb.20210516001 |
[10] | LI Hexi, HAN Xinle, FANG Zaojun. A visual model of welding robot based on CNN deep learning[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 154-160. DOI: 10.12073/j.hjxb.2019400060 |
1. |
韩莹,何实,吕晓春,郭枭,焦帅杰. 粗晶铝合金超塑性变形机理的研究现状. 焊接. 2023(03): 11-21+26 .
![]() | |
2. |
谢吉林,汪洪伟,陈玉华,刘文阔,张体明,王善林. Al/Mg搅拌摩擦点焊–钎焊接头的微观组织与拉伸剪切性能研究. 航空制造技术. 2023(11): 59-65+76 .
![]() | |
3. |
刘文阔,谢吉林,陈玉华,汪洪伟,张体明,王善林. 搅拌针对FSSW-B接头界面组织与力学性能的影响. 稀有金属材料与工程. 2023(07): 2468-2477 .
![]() | |
4. |
舒伟. 基于铝合金先进焊接工艺的探索. 现代制造技术与装备. 2022(03): 171-173 .
![]() | |
5. |
余光伟,谢清程,杨珺柳,施睿赟,蔡翔宇,李文海. 油管模型建立及结构对称性对其残余应力影响. 焊接学报. 2022(03): 101-112+119-120 .
![]() |