Citation: | BAI Zijian, LI Zhiwen, ZHANG Zhifen, QIN Rui, ZHANG Shuai, XU Yaowen, WEN Guangrui. On-line monitoring of TIG welding quality of nuclear power plug tube based on arc spectrum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 8-19. DOI: 10.12073/j.hjxb.20230610002 |
In order to monitor the quality of TIG welding for blocked tube welding of high-temperature gas-cooled reactor steam generators under the constraints of operation space and radiation environment, a real-time monitoring system based on a fiber optic spectrometer for TIG welding process was developed for monitoring the depth of penetration during welding. This study used the system to collect arc spectra and utilized Principal Component Analysis to obtain the spectral principal components of different weld penetration depths. An innovative ATT-L2R-BiLSTM deep learning model was proposed to achieve classification and recognition of weld penetration depth during blocked tube TIG welding. The results show that the model achieved an accuracy of 92.61% under laboratory conditions, which is 5.11% higher than that of the Bi-LSTM network. The model was tested and verified on a blocked tube verification platform for nuclear power steam generators, achieving an accuracy of 99.26%. Finally, deep mining of welding quality features and precise evaluation of weld penetration depth during TIG welding were achieved under incomplete spectral information.
[1] |
欧清扬. 核电蒸汽发生器换热管内壁残余应力测试技术应用研究[D]. 广州: 华南理工大学, 2019.
Ou Qingyang, Application of residual stress test technology on inner wall of heat exchange tube of nuclear power steam generator [D]. Guangzhou: South China University of Technology, 2019.
|
[2] |
刘冀. 表面状态对蒸汽发生器传热管材高温高压水腐蚀行为的影响[D]. 合肥: 中国科学技术大学, 2021.
Liu Ji. Influence of surface state on high temperature and high pressure water corrosion behavior of steam generator heat transfer pipe [D]. Hefei: University of Science and Technology of China, 2021.
|
[3] |
齐欣. 5A06铝合金变动送气TIG焊焊缝性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2021.
Qi Xin. Study on weld properties of 5A06 aluminum alloy with variable gas injection TIG welding [D]. Harbin: Harbin University of Science and Technology, 2021.
|
[4] |
李振华. 核电蒸汽发生器传热管疲劳行为及损伤机理研究[D]. 北京: 北京科技大学, 2022.
Li Zhenhua. Study on fatigue behavior and damage mechanism of heat transfer tube of nuclear power steam generator [D]. Beijing: University of Science and Technology Beijing, 2022.
|
[5] |
李春凯, 席保龙, 石玗, 等. 氟化物活性TIG焊电弧特征的光谱分析[J]. 焊接学报, 2021(42): 54 − 58. doi: 10.12073/j.hjxb.20210201002
Li Chunkai, Xi Baolong, Shi Yu, et al. Spectroscopic analysis of arc characteristics in fluoride-activated TIG welding[J]. Transactions of the China Welding Institution, 2021(42): 54 − 58. doi: 10.12073/j.hjxb.20210201002
|
[6] |
熊俊, 郑森木, 陈辉, 等. 电弧增材制造成形在线监测与控制研究进展及展望[J]. 电焊机, 2021, 51(8): 70 − 78. doi: 10.7512/j.issn.1001-2303.2021.07.13
Xiong Jun, Zheng Senmu, Chen Hui, et al. Research progress and prospect of on-line monitoring and control of arc additive manufacturing[J]. Electric Welding Machine, 2021, 51(8): 70 − 78. doi: 10.7512/j.issn.1001-2303.2021.07.13
|
[7] |
Xia C, Pan Z, Fei Z, et al. Vision based defects detection for Keyhole TIG welding using deep learning with visual explanation[J]. Journal of Manufacturing Processes, 2020, 56: 845 − 855. doi: 10.1016/j.jmapro.2020.05.033
|
[8] |
卢振洋, 宫兆辉, 闫志鸿, 等. 基于深度学习的TIG焊背部熔池检测和熔宽提取[J]. 北京工业大学学报, 2019, 46(9): 988 − 996. doi: 10.11936/bjutxb2018070033
Lu Zhenyang, Gong Zhaohui, Yan Zhihong, et al. Deep learning based weld pool detection and weld width extraction for TIG welding back[J]. Journal of Beijing University of Technology, 2019, 46(9): 988 − 996. doi: 10.11936/bjutxb2018070033
|
[9] |
王良瑞. 核电厚壁管道全位置TIG焊熔透状态监测及视觉信息表征[D]. 上海: 上海交通大学, 2020.
Wang Liangrui. Penetration state monitoring and visual information characterization of full-position TIG welding for thick-wall nuclear power pipeline [D]. Shanghai: Shanghai Jiao Tong University, 2020.
|
[10] |
Górka J, Jamrozik W. Enhancement of imperfection detection capabilities in TIG welding of the infrared monitoring system[J]. Metals, 2021, 11: 41 − 42.
|
[11] |
Zhang Z F, Wen G R, Chen S B. Weld image deep learning-based on-line defects detection using convolutional neural networks for Al alloy in robotic arc welding[J]. Journal of Manufacturing Processes, 2019, 45: 208 − 216. doi: 10.1016/j.jmapro.2019.06.023
|
[12] |
Ren W, Wen G, Xu B, et al. A novel convolutional neural network based on time–frequency spectrogram of arc sound and its application on GTAW penetration classification[J]. IEEE Transactions on Industrial Informatics, 2020, 17(2): 809 − 819.
|
[13] |
Madhvacharyula A S, Pavan A V S, Gorthi S, et al. In situ detection of welding defects: a review[J]. Welding in the World, 2022, 66(4): 611 − 628. doi: 10.1007/s40194-021-01229-6
|
[14] |
张晋, 袁召, 陈立学, 等. 离子体发射光谱诊断[J]. 强激光与粒子束, 2021, 33(6): 120 − 125.
Zhang Jin, Yuan Zhao, Chen Lixue, et al. Ion emission spectroscopy diagnosis[J]. High Power Laser and Particle Beams, 2021, 33(6): 120 − 125.
|
[15] |
刘莹, 杨立军, 何天玺, 等. 药芯焊丝TIG焊电弧特性的光谱分析[J]. 光谱学与光谱分析, 2017, 37(7): 2171 − 2176.
Liu Ying, Yang Lijun, He Tianxi, et al. Spectral analysis of TIG welding arc characteristics of flux-cored wire[J]. Spectroscopy and Spectral Analysis, 2017, 37(7): 2171 − 2176.
|
[16] |
刘自刚, 梅亚泽, 张建峰, 等. 深熔TIG焊研究现状与展望[J]. 热加工工艺, 2023, 52(1): 6 − 11.
Liu Zigang, Mei Yaze, Zhang Jianfeng, et al. Research status and prospect of deep penetration TIG welding[J]. Hot Working Technology, 2023, 52(1): 6 − 11.
|
[17] |
Mirapeix J, Vila E, Valdiande J J, et al. Real-time detection of the aluminium contribution during laser welding of Usibor1500 tailor-welded blanks[J]. Journal of Materials Processing Technology, 2016, 235(9): 106 − 113.
|
[18] |
Zhang Z, Chen H, Xu Y, et al. Multisensor-based real-time quality monitoring by means of feature extraction, selection and modeling for Al alloy in arc welding[J]. Mechanical Systems & Signal Processing, 2015, 60: 151 − 165.
|
[19] |
Palanco S, Klassen M, Skupin J, et al. Spectroscopic diagnostics on CW-laser welding plasmas of aluminum alloys[J]. Spectrochim Acta Part B At Spectrosc, 2001, 56: 651 − 659.
|
[20] |
Nomura K, Yoshii K, Toda K, et al. 3D measurement of temperature and metal vapor concentration in MIG arc plasma using a multi-directional spectroscopic method [J]. Journal of Physics, D. Applied Physics: A Europhysics Journal, 2017, 42: 425205.
|
[21] |
Song Lijun,Huang Wenkang,Han Xu,et al. Real-time composition monitoring using support vector regression of laser-induced plasma for laser additive manufacturing[J]. IEEE Transactions on Industrial Electronics, 2016, 64(1): 633 − 642.
|
[22] |
Zhang Linjie, Bai Qinglin, Ning Jie, et al. A comparative study on the microstructure and properties of copper joint between MIG welding and laser-MIG hybrid welding[J]. Materials & Design, 2016, 110(15): 35 − 50.
|
[23] |
Huang Y, Wu D, Lü N, et al. Investigation of porosity in pulsed GTAW of aluminum alloys based on spectral and X-ray image analyses[J]. Journal of Materials Processing Technology, 2017, 243: 365 − 373. doi: 10.1016/j.jmatprotec.2016.12.026
|
[24] |
叶昕. 基于光谱分析的电弧焊接在线检测与评估方法研究[D]. 镇江: 江苏大学, 2020.
Ye Xin. Research on online detection and evaluation method of arc welding based on spectral analysis [D]. Zhenjiang: Jiangsu University, 2020.
|
[25] |
Zhang Z, Yang Z, Ren W, et al. Random forest-based real-time defect detection of Al alloy in robotic arc welding using optical spectrum[J]. Journal of Manufacturing Processes, 2019, 42: 51 − 59. doi: 10.1016/j.jmapro.2019.04.023
|
[26] |
Huang Y, Zhao D, Chen H, et al. Porosity detection in pulsed GTA welding of 5A06 Al alloy through spectral analysis[J]. Journal of Materials Processing Technology, 2018, 259: 332 − 340. doi: 10.1016/j.jmatprotec.2018.05.006
|
[27] |
张志芬, 杨哲, 任文静, 等. 电弧光谱深度挖掘下的铝合金焊接过程状态检测[J]. 焊接学报, 2019, 40(1): 12 − 25. doi: 10.12073/j.hjxb.2019400005
Zhang Zhifen, Yang Zhe, Ren Wenjing, et al. Welding state detection of aluminum alloy by arc spectral deep mining[J]. Transactions of the China Welding Institution, 2019, 40(1): 12 − 25. doi: 10.12073/j.hjxb.2019400005
|
[28] |
张萌. 基于AM_BiLSTM的在线评论质量分类研究[D]. 北京: 北京交通大学, 2021.
Zhang Meng. Research on quality classification of online reviews based on AM_BiLSTM [D]. Beijing: Beijing Jiaotong University, 2021.
|
[1] | YIN Chi, GUO Yonghuan, FAN Xiying, ZHU Zhiwei, SONG Haoxuan, ZHANG Liang. Multi-objective optimization of aluminum copper laser welding parameters based on BKA-GBRT and MOSPO[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 140-144. DOI: 10.12073/j.hjxb.20240721002 |
[2] | LI Jiahao, SHU Linsen, HENG Zhao, WU Han. Multi-objective optimization of laser cladding parameters based on PCA and RSM-DE algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 67-73. DOI: 10.12073/j.hjxb.20220310001 |
[3] | ZHOU Wenting, SI Yupeng, HE Hongzhou, WANG Rongjie. Design of reflow oven furnace temperature based on quantum multi-objective optimization algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 85-91. DOI: 10.12073/j.hjxb.20210508001 |
[4] | HONG Bo, LIU Long, WANG Tao. Prediction in longeron automatic welding of generalized regression neural network by ameliorated fruit flies optimization algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(1): 73-76. |
[5] | ZHOU Jianping, XU Yan, CAO Jiong, YIN Yiliang, XU Yihao. High power supply optimization design based on BP neural network and genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 9-13. |
[6] | GAO Xiangdong, LIU Yingying, XIAO Zhenlin, CHEN Xiaohui. Analysis of high-power disk laser welding status based on multi-sensor information fusion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(12): 31-34,88. |
[7] | GUO Haibin, LI Guizhong. A double-characteristic fusion-control algorithm for resistance spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (4): 105-108. |
[8] | SHU Fuhua. Friction welding technological parameter optimization based on LSSVM and AFSA[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 104-108. |
[9] | CAI Guorui, DU Dong, TIAN Yuan, HOU Runshi, GAO Zhiling. Defect detection of X-ray images of weld using optimized heuristic search based on image information fusion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (2): 29-32. |
[10] | CUI Xiaofang, MA Jun, ZHAO Haiyan, ZHAO Wenzhong, MENG Kai. Optimization of welding sequences of box-like structure based on a genetic algorithm method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (8): 5-8. |
1. |
赵衍华,张粟泓,王非凡,郝云飞,宋建岭,孙世烜,王国庆. 搅拌摩擦焊接与加工技术进展. 航天制造技术. 2025(01): 1-25 .
![]() | |
2. |
李充,田亚林,齐振国,王崴,杨彦龙,王依敬. 6082-T6铝合金无减薄搅拌摩擦焊接头组织与性能. 焊接学报. 2022(06): 102-107+119 .
![]() |