Citation: | LI Hexi, HAN Xinle, FANG Zaojun. A visual model of welding robot based on CNN deep learning[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 154-160. DOI: 10.12073/j.hjxb.2019400060 |
陈希章, 陈善本. 弧焊机器人起始焊接位置图像识别与定位[J]. 焊接学报, 2009, 30(4): 17 − 20
|
Chen Xizhang, Chen Shanben. Recognition and positioning of start welding position for arc welding robot[J]. Transactions of the China Welding Institution, 2009, 30(4): 17 − 20
|
Ye Yanhui, Zhang Hua, Pan Jiluan, et al. System of underwater welding robot for large-scale structure[J]. Transactions of the China Welding Institution, 2015, 36(11): 41 − 44
|
叶艳辉, 张 华, 潘继銮, 等. 大型构件水下焊接机器人系统[J]. 焊接学报, 2015, 36(11): 41 − 44
|
Yang Xuejun, Xu Yanling, Huang Seji, et al. A recognition algorithm for feature points of V groove welds based on structured light[J]. Journal of Shanghai Jiaotong University, 2016, 50(10): 1573 − 1577
|
杨雪君, 许燕玲, 黄色吉, 等. 一种基于结构光的V型坡口焊缝特征点识别算法[J]. 上海交通大学学报, 2016, 50(10): 1573 − 1577
|
郭 亮, 张 华. 狭小空间直角角焊缝识别跟踪焊接系统[J]. 焊接学报, 2017, 38(11): 21 − 26
|
Guo Liang, Zhang Hua. Identification tracking welding system for right angle fillet seam in narrow space[J]. Transactions of the China Welding Institution, 2017, 38(11): 21 − 26
|
Cong Huanwu, Guo Fujuan, Lu Fei, et al. Research on weld seam recognition technology based on CCD image processing[J]. Electronic Measurement Technology, 2012, 35(3): 73 − 76
|
丛焕武, 郭福娟, 吕 飞, 等. 基于CCD图像处理的焊缝识别技术研究[J]. 电子测量技术, 2012, 35(3): 73 − 76
|
Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527 − 1554.
|
Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504 − 507.
|
Lecun Y, Bengio Y, Hinton G E. Deep learning[J]. Nature, 2015, 521(7553): 436 − 444.
|
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]//Proc. Of International Conference on Learning Representations (ICLR), San Diego, CA, USA, 2015: 1–14.
|
Yim J, Ju J, Jung H. Image classification using convolutional neural networks with multi-stage feature[C]//Proc. of 3rd International Conference on Robot Intelligence Technology and Applications, Springer, Switzerland, 2015: 587–593.
|
Tompson J, Goroshin R, Jain A, et al. Efficient object localization using convolutional networks[C]//Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015: 648–656.
|