Citation: | LI Hexi, HAN Xinle, FANG Zaojun. A visual model of welding robot based on CNN deep learning[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 154-160. DOI: 10.12073/j.hjxb.2019400060 |
陈希章, 陈善本. 弧焊机器人起始焊接位置图像识别与定位[J]. 焊接学报, 2009, 30(4): 17 − 20
|
Chen Xizhang, Chen Shanben. Recognition and positioning of start welding position for arc welding robot[J]. Transactions of the China Welding Institution, 2009, 30(4): 17 − 20
|
Ye Yanhui, Zhang Hua, Pan Jiluan, et al. System of underwater welding robot for large-scale structure[J]. Transactions of the China Welding Institution, 2015, 36(11): 41 − 44
|
叶艳辉, 张 华, 潘继銮, 等. 大型构件水下焊接机器人系统[J]. 焊接学报, 2015, 36(11): 41 − 44
|
Yang Xuejun, Xu Yanling, Huang Seji, et al. A recognition algorithm for feature points of V groove welds based on structured light[J]. Journal of Shanghai Jiaotong University, 2016, 50(10): 1573 − 1577
|
杨雪君, 许燕玲, 黄色吉, 等. 一种基于结构光的V型坡口焊缝特征点识别算法[J]. 上海交通大学学报, 2016, 50(10): 1573 − 1577
|
郭 亮, 张 华. 狭小空间直角角焊缝识别跟踪焊接系统[J]. 焊接学报, 2017, 38(11): 21 − 26
|
Guo Liang, Zhang Hua. Identification tracking welding system for right angle fillet seam in narrow space[J]. Transactions of the China Welding Institution, 2017, 38(11): 21 − 26
|
Cong Huanwu, Guo Fujuan, Lu Fei, et al. Research on weld seam recognition technology based on CCD image processing[J]. Electronic Measurement Technology, 2012, 35(3): 73 − 76
|
丛焕武, 郭福娟, 吕 飞, 等. 基于CCD图像处理的焊缝识别技术研究[J]. 电子测量技术, 2012, 35(3): 73 − 76
|
Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527 − 1554.
|
Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504 − 507.
|
Lecun Y, Bengio Y, Hinton G E. Deep learning[J]. Nature, 2015, 521(7553): 436 − 444.
|
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]//Proc. Of International Conference on Learning Representations (ICLR), San Diego, CA, USA, 2015: 1–14.
|
Yim J, Ju J, Jung H. Image classification using convolutional neural networks with multi-stage feature[C]//Proc. of 3rd International Conference on Robot Intelligence Technology and Applications, Springer, Switzerland, 2015: 587–593.
|
Tompson J, Goroshin R, Jain A, et al. Efficient object localization using convolutional networks[C]//Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015: 648–656.
|
[1] | WANG Tianqi, MENG Kaiquan, WANG Chuanrui. Prediction and optimization of multi-layer and multi-pass welding process parameters based on GA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 29-37. DOI: 10.12073/j.hjxb.20230523001 |
[2] | ZHUO Wenbo, TAN Guobi, CHEN Qiuren, HOU Zehong, WANG Xianhui, HAN Weijian, HUANG Li. Multi-objective optimization of resistance spot welding process parameters of ultra-high strength steel based on agent model and NSGA-Ⅱ[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 20-25. DOI: 10.12073/j.hjxb.20230317002 |
[3] | GONG Zhaoliang, JIANG Ping, SHI Jianhong, XU Kaiqin, GENG Shaoning, SHU Leshi. Optimization of laser lap welding process of power battery 1060 aluminum alloy sheet with adjustable ring spot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 67-79. DOI: 10.12073/j.hjxb.20230117001 |
[4] | ZHAO Dawei1, LIANG Dongjie2, WANG Yuanxun3. Parameters optimization of small scale spot welding for titanium alloy via Taguchi experiment and grey relational analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 101-104. DOI: 10.12073/j.hjxb.2018390132 |
[5] | SHU Fuhua, TIAN Huifang. Process parameters optimization of pulsed laser welding of 6061 aluminum alloy based on SPA[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 109-114. DOI: 10.12073/j.hjxb.2018390106 |
[6] | LU Zhenyang, TANG Chao, XIONG Wei, HUANG Pengfei. Parameter optimization for MAG of DP780[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (12): 9-12. |
[7] | WANG Hongxiao, SHI Chunyuan, WANG Chunsheng, WANG Ting. Optimization of laser welding parameters of stainless steel vehicle body based on response surface methodology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (10): 69-72. |
[8] | LIU Wei, CHEN Guoqing, ZHANG Binggang, FENG Jicai. Investigation on process optimization of Cu Ti electron beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (5): 89-92. |
[9] | LIU Xue-mei, YAO Jun-shan, ZHANG Yan-hua. Optimization for friction surfacing parameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (6): 99-102. |
[10] | ZHANC Ben-sheng, ZHOU Hong, YU Yong-li. Optimizing Parameters or A New Sprying Material[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (4): 58-60. |
1. |
黄伟波,赵晓宇. 选区激光熔化成形参数对熔池尺寸的影响. 肇庆学院学报. 2023(05): 65-73+79 .
![]() | |
2. |
王鹏,马蕊,魏永胜,李萍. TC4钛合金不同焊接方法焊接性及接头性能分析. 焊管. 2022(08): 17-23 .
![]() | |
3. |
邓新国,游纬豪,徐海威. 贝叶斯极限梯度提升机结合粒子群算法的电阻点焊参数预测. 电子与信息学报. 2021(04): 1042-1049 .
![]() | |
4. |
易润华,邓黎鹏,程东海,刘奋成. 基于多指标综合评分方差分析的镍铬合金储能缝焊工艺研究. 材料导报. 2021(14): 14161-14165 .
![]() | |
5. |
宋少东,王燕燕,舒林森,何雅娟. 基于NSGA-Ⅱ的Fe基合金激光熔覆工艺参数优化. 电焊机. 2021(12): 1-5+126 .
![]() | |
6. |
邢晓芳,贲强,周勇,路浩,韩佩. 基于回归分析的螺母凸焊工艺优化. 焊接学报. 2020(12): 91-96+102 .
![]() |