Advanced Search
MA Xiaotian, YAN Dejun, MENG Xiangchen, WAN Long, HUANG Yongxian. Progress on the control of intermetallic compounds in aluminum/steel friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(7): 1-11. DOI: 10.12073/j.hjxb.20200617001
Citation: MA Xiaotian, YAN Dejun, MENG Xiangchen, WAN Long, HUANG Yongxian. Progress on the control of intermetallic compounds in aluminum/steel friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(7): 1-11. DOI: 10.12073/j.hjxb.20200617001

Progress on the control of intermetallic compounds in aluminum/steel friction stir welding

More Information
  • Received Date: June 16, 2020
  • Available Online: October 15, 2020
  • The reliable joining of aluminum/steel dissimilar metals is an important way to realize lightweight and energy-saving design in the automobile industry. Solid-state welding for dissimilar aluminum/steel was more applicable due to their great differences in thermal physical and chemical properties. Friction stir welding (FSW) has great advantages and potentials in joining aluminum/steel dissimilar metals because of its low heat input, short holding time at elevated temperature and low welding distortion. One of the core technologies for high-quality aluminum/steel dissimilar FSW joints could be attributed to the control of intermetallic compounds. Based on the solid-state joining mechanism of aluminum/steel during FSW, the current progress on the regulation of interfacial intermetallic compounds was reviewed from the aspects of welding parameters (including welding speed, rotational velocity, tool offset, tilting angle and plunging depth), tool structures (pin profile, thread and taper angle) and interlayer design (Al and Zn, etc.). Based on the enhancement of joint bearing capacity, new techniques about the FSW of aluminum/steel were summarized, such as keyhole refilling, self-riveting and external assisted FSW. Furthermore, the development trends on FSW of aluminum/steel were prospected.
  • Meng Xiangchen, Huang Yongxian, Cao Jian, et al. Recent progress on control strategies for inherent issues in friction stir welding[J]. Progress in Materials Science, 2020, 115: 100706.
    万龙. 铝/钢搅拌摩擦搭接强流变作用下界面行为及力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    Wan Long. Influence of severe plastic deformation on interfacial behavior and mechanical properties of Al/steel friction stir lap joint[D]. Harbin:Harbin Institute of Technology, 2015.
    Coelho R S, Kostka A, Sheikhi S, et al. Microstructure and mechanical properties of an AA6181-T4 aluminium alloy to HC340LA high strength steel friction stir overlap weld[J]. Advanced Engineering Materials, 2008, 10(10): 961 − 972. doi: 10.1002/adem.200800028
    Massalski T B. Binary alloy phase diagrams[M]. New York: ASM International, 1990.
    李国伟, 王楠楠, 邱然锋, 等. 铝合金/不锈钢电阻点焊工艺与接头性能研究[J]. 轻合金加工技术, 2015, 43(6): 62 − 66.

    Li Guowei, Wang Nannan, Qiu Ranfeng, et al. Study on resistance spot welding and performances of the joint between aluminum alloy and stainless[J]. Light Alloy Fabrication Technology, 2015, 43(6): 62 − 66.
    张明军, 陈根余, 李时春, 等. 车用铝合金与镀锌钢光纤激光搭接焊试验研究[J]. 中国激光, 2011, 38(6): 134 − 139.

    Zhang Mingjun, Chen Genyu, Li Shichun, et al. Experimental investigation on fiber laser overlap welding of automotive aluminum to galvanized steel[J]. Chinese Journal of Lasers, 2011, 38(6): 134 − 139.
    张满, 张军, 蒋腾, 等. Fe-Al金属间化合物对铝/钢钎焊接头力学性能的影响[J]. 焊接学报, 2018, 39(1): 61 − 64.

    Zhang Man, Zhang Jun, Jiang Teng, et al. Effect of Fe-Al intermetallic compound on mechanical property of aluminum/steel brazed joint[J]. Transactions of the China Welding Institution, 2018, 39(1): 61 − 64.
    Ma Yunwu, Lou Ming, Li Yongbing, et al. Effect of rivet and die on self-piercing rivetability of AA6061-T6 and mild steel CR4 of different gauges[J]. Journal of Materials Processing Technology, 2018, 251: 282 − 294. doi: 10.1016/j.jmatprotec.2017.08.020
    王希靖, 邓向斌, 王磊. Q235钢板与6082铝合金搅拌摩擦焊工艺[J]. 焊接学报, 2016, 27(1): 99 − 102.

    Wang Xijing, Deng Xiangbin, Wang Lei. Parametric study on friction stir welding of Q235 steel with 6082 aluminum alloy[J]. Transactions of the China Welding Institution, 2016, 27(1): 99 − 102.
    Masaki K, Sato Y S, Maeda M, et al. Experimental simulation of recrystallized microstructure in friction stir welded Al alloy using a plane-strain compression test[J]. Scripta Materialia, 2008, 58(5): 355 − 360. doi: 10.1016/j.scriptamat.2007.09.056
    Wu X L, Tao N R, Wei Q M, et al. Microstructural evolution and formation of nanocrystalline intermetallic compound during surface mechanical attrition treatment of cobalt[J]. Acta Materialia, 2007, 55(17): 5768 − 5779. doi: 10.1016/j.actamat.2007.06.030
    Ma Z Y, Pilchak A L, Juhas M C, et al. Microstructural refinement and property enhancement of cast light alloys via friction stir processing[J]. Scripta Materialia, 2008, 58(5): 361 − 366. doi: 10.1016/j.scriptamat.2007.09.062
    Rest C V D, Jacques P J, Simar A. On the joining of steel and aluminium by means of a new friction melt bonding process[J]. Scripta Materialia, 2014, 77: 25 − 28. doi: 10.1016/j.scriptamat.2014.01.008
    万龙, 黄永宪, 刘鑫, 等. 铝/钢异质金属搅拌摩擦焊技术研究进展[J]. 焊接, 2018(1): 12 − 19, 24.

    Wan Long, Huang Yongxian, Liu Xin, et al. Study progress on friction stir welding of aluminum / steel dissimilar materials[J]. Welding & Joining, 2018(1): 12 − 19, 24.
    Movahedi M, Kokabi A H, Reihani S M S, et al. Effect of tool travel and rotation speeds on weld zone defects and joint strength of aluminium steel lap joints made by friction stir welding[J]. Science and Technology of Welding and Joining, 2012, 17(2): 162 − 167. doi: 10.1179/1362171811Y.0000000092
    Bozzi S, Helbert-Etter A L, Baudin T, et al. Intermetallic compounds in Al 6016/IF-steel friction stir spot welds[J]. Materials Science and Engineering, 2010, 527(16-17): 4505 − 4509. doi: 10.1016/j.msea.2010.03.097
    王希靖, 邓向斌, 王磊, 等. 铝/钢搅拌摩擦焊对接焊缝组织及机理研究[J]. 材料科学与工艺, 2015, 23(5): 77 − 81.

    Wang Xijing, Deng Xiangbin, Wang Lei, et al. Microstructure and joining mechanism of aluminium-steel friction stir butt welding[J]. Materials Science and Technology, 2015, 23(5): 77 − 81.
    Hsieh M J, Lee R T, Chiou Y C. Friction stir spot fusion welding of low-carbon steel to aluminum alloy[J]. Journal of Materials Processing Technology, 2016, 240: 118 − 125.
    Dehghani M, Amadeh A, Mousavi S A A A. Investigations on the effects of friction stir welding parameters on intermetallic and defect formation in joining aluminum alloy to mild steel[J]. Materials and design, 2013, 49: 433 − 441. doi: 10.1016/j.matdes.2013.01.013
    Pourali M, Abdollah-zadeh A, Saeid T, et al. Influence of welding parameters on intermetallic compounds formation in dissimilar steel/aluminum friction stir welds[J]. Journal of Alloys and Compounds, 2017, 715: 1 − 8. doi: 10.1016/j.jallcom.2017.04.272
    张桂源, 郄新哲, 宫文彪, 等. 钢铝异种材料搅拌摩擦焊界面组织及性能[J]. 材料热处理学报, 2018, 39(5): 159 − 164.

    Zhang Guiyuan, Qie Xinzhe, Gong Wenbiao, et al. Microstructure and properties of friction stir welding interface of steel and aluminum dissimilar materials[J]. Transactions of Materials and Heat Treatment, 2018, 39(5): 159 − 164.
    Haghshenas M, Abdel-Gwad A, Omran A M, et al. Friction stir weld assisted diffusion bonding of 5754 aluminum alloy to coated high strength steels[J]. Materials and Design, 2014, 55: 442 − 449. doi: 10.1016/j.matdes.2013.10.013
    Liu X, Lan S H, Ni J. Analysis of process parameters effects on friction stir welding of dissimilar aluminum alloy to advanced high strength steel[J]. Materials and Design, 2014, 59: 50 − 62. doi: 10.1016/j.matdes.2014.02.003
    Wang Tianhao, Komarasamy M, Liu Kaimiao, et al. Friction stir butt welding of strain-hardened aluminum alloy with high strength steel[J]. Materials science and Engineering, 2018, 737(8): 85 − 89.
    Ramachandran K K, Murugan N, Kumar S S. Effect of tool axis offset and geometry of tool pin profile on the characteristics of friction stir welded dissimilar joints of aluminum alloy AA5052 and HSLA steel[J]. Materials Science and Engineering, 2015, 639(15): 219 − 233.
    Wan Long, Huang Yongxian. Microstructure and mechanical properties of Al/steel friction stir lap weld[J]. Metals, 2017, 7(12): 542. doi: 10.3390/met7120542
    Wei Y, Li J, Xiong J T, et al. Effect of tool pin insertion depth on friction stir lap welding of aluminum to stainless steel[J]. Journal of Materials Engineering and Performance, 2013, 22(10): 3005 − 3013. doi: 10.1007/s11665-013-0595-y
    邢丽, 柯黎明, 黄春平. 铝合金与钢的搅拌摩擦焊焊缝成形及接头性能[J]. 焊接学报, 2007, 28(1): 29 − 32.

    Xing Li, Ke Liming, Huang Chunping. Weld appearances and mechanical properties of friction stir welded joint of Al alloy and mild steel[J]. Transactions of the China Welding Institution, 2007, 28(1): 29 − 32.
    Elrefaey A, Gouda M, Takahashi M, et al. Characterization of aluminum/steel lap joint by friction stir welding[J]. Journal of Materials Engineering and Performance, 2005, 14(1): 10 − 17. doi: 10.1361/10599490522310
    Fereiduni E, Movahedi M, Kokabi A H. Aluminum/steel joints made by an alternative friction stir spot welding process[J]. Journal of Materials Processing Technology, 2015, 224: 1 − 10. doi: 10.1016/j.jmatprotec.2015.04.028
    张昭, 刘会杰. 搅拌头形状对搅拌摩擦焊材料变形和温度场的影响[J]. 焊接学报, 2011, 32(3): 5 − 8.

    Zhang Zhao, Liu Huijie. Effect of pin shapes on material deformation and temperature filed in friction stir welding[J]. Transactions of the China Welding Institution, 2011, 32(3): 5 − 8.
    Huang Yongxian, Wan Long, Si Xiaoqing, et al. Achieving high-quality Al/Steel joint with ultrastrong interface[J]. Metallurgical and Materials Transactions A, 2019, 50: 295 − 299. doi: 10.1007/s11661-018-5006-4
    Xiong J T, Li J L, Qian J W, et al. High strength lap joint of aluminium and stainless steels fabricated by friction stir welding with cutting pin[J]. Science and Technology of Welding and Joining, 2012, 17(3): 196 − 201. doi: 10.1179/1362171811Y.0000000093
    姬书得, 孟庆国, 史清宇, 等. 搅拌针形状影响搅拌摩擦焊过程金属塑性流动规律的数值模拟[J]. 焊接学报, 2013, 24(2): 97 − 100.

    Ji Shude, Meng Guoqing, Shi Qingyu, et al. Numerical simulation of metal plastic flow in friction stir welding affected by pin shape[J]. Transactions of the China Welding Institute, 2013, 24(2): 97 − 100.
    王大勇, 冯吉才, 王攀峰. 搅拌摩擦焊焊热输入数值模型[J]. 焊接学报, 2005, 26(3): 25 − 29.

    Wang Dayong, Feng Jicai, Wang Panfeng. Numerical model of heat input from rotational tool during friction stir welding[J]. Transactions of the China Welding Institution, 2005, 26(3): 25 − 29.
    Li Shuhan, Chen Yuhua, Kang Jidong, et al. Friction stir lap welding of aluminum alloy to advanced high strength steel using a cold-spray deposition as an interlayer[J]. Materials Letters, 2019, 239: 212 − 215. doi: 10.1016/j.matlet.2018.12.060
    Zhou Li, Yu Mingrun, Liu Baiyang, et al. Microstructure and mechanical properties of Al/steel dissimilar welds fabricated by friction surfacing assisted friction stir lap welding[J]. Journal of Materials Research and Technology, 2020, 9(1): 212 − 221. doi: 10.1016/j.jmrt.2019.10.046
    Niu Shiyu, Ji Shude, Yan Dejun, et al. AZ31B/7075-T6 alloys friction stir lap welding with a zinc interlayer[J]. Journal of Materials Processing Technology, 2019, 263: 82 − 90. doi: 10.1016/j.jmatprotec.2018.08.009
    高鹏宇, 许惠斌, 李添翼, 等. 镀锌钢板与6061铝合金搭接搅拌摩擦钎焊[J]. 精密成形工程, 2018, 10(2): 113 − 116.

    Gao Pengyu, Xu Huibin, Li Tianyi, et al. Lap friction stir brazing of galvanized steel sheet and 6061 aluminum alloy[J]. Journal of Netshape Forming Engineering, 2018, 10(2): 113 − 116.
    高鹏宇, 许惠斌, 李默阳, 等. Zn中间层下钢与铝基复合材料的搅拌摩擦焊研究[J]. 热加工工艺, 2019, 48(3): 73 − 76.

    Gao Pengyu, Xu Huibin, Li Moyang, et al. Study on friction stir welding of steel and aluminum matrix composite with Zn intermediate layer[J]. Hot Working Technology, 2019, 48(3): 73 − 76.
    Zheng Qixian, Feng Xiaomei, Shen Yifu, et al. Dissimilar friction stir welding of 6061 Al to 316 stainless steel using Zn as a filler metal[J]. Journal of Alloys and Compounds, 2016, 686: 693 − 701. doi: 10.1016/j.jallcom.2016.06.092
    Chen Y C, Komazaki T, Tsumura T, et al. Role of zinc coat in friction stir lap welding Al and zinc coated steel[J]. Materials Science and Technology, 2008, 24(1): 33 − 39. doi: 10.1179/174328407X248505
    Ratanathavorn W, Melander A. Influence of zinc on intermetallic compounds formed in friction stir welding of AA5754 aluminium alloy to galvanised ultra-high strength steel[J]. Science and Technology of Welding and Joining, 2017, 22(8): 673 − 680. doi: 10.1080/13621718.2017.1302553
    Chen Kai, Liu Xun, Ni Jun. Keyhole refilled friction stir spot welding of aluminum alloy to advanced high strength steel[J]. Journal of Materials Processing Technology, 2017, 249: 452 − 462. doi: 10.1016/j.jmatprotec.2017.06.039
    姬书得, 卓彬, 马琳, 等. 回填式搅拌摩擦点焊过程的材料流动规律模拟[J]. 焊接学报, 2016, 37(4): 39 − 42.

    Ji Shude, Zhuo Bin, Ma Lin, et al. Simulation of material flow behavior during refill friction stir spot welding process[J]. Transactions of the China Welding Institution, 2016, 37(4): 39 − 42.
    Li Peng, Chen Su, Dong Honggang, et al. Interfacial microstructure and mechanical properties of dissimilar aluminum/steel joint fabricated via refilled friction stir spot welding[J]. Journal of Manufacturing Processes, 2020, 49: 385 − 396. doi: 10.1016/j.jmapro.2019.09.047
    王希靖, 张亚州, 张忠科, 等. 铝/钢无匙孔搅拌摩擦点焊焊接性分析[J]. 焊接学报, 2015, 36(1): 1 − 4.

    Wang Xijing, Zhang Yazhaou, Zhang Zhongke, et al. Welding analyses of friction stir spot welding without keyhole between aluminum alloy and zinc-coated steel[J]. Transactions of the China Welding Institution, 2015, 36(1): 1 − 4.
    Huang Yongxian, Huang Tifang, Wan Long, et al. Material flow and mechanical properties of aluminum-to-steel self-riveting friction stir lap joints[J]. Journal of Materials Processing Technology, 2019, 263: 129 − 137. doi: 10.1016/j.jmatprotec.2018.08.011
    Marco Thomä, Wagner G, Benjamin Straß, et al. Ultrasound enhanced friction stir welding of aluminum and steel: Process and properties of EN AW 6061/DC04-Joints[J]. Journal of Materials Science and Technology, 2018, 34(1): 163 − 172. doi: 10.1016/j.jmst.2017.10.022
    Patel V, Badheka V, Li W Y, et al. Hybrid friction stir processing with active cooling approach to enhance superplastic behavior of AA7075 aluminum alloy[J]. Archives of Civil and Mechanical Engineering, 2019, 19(4): 1368 − 1380. doi: 10.1016/j.acme.2019.08.007
    Mahto R P, Gupta C, Kinjawadekar M, et al. Weldability of AA6061-T6 and AISI 304 by underwater friction stir welding[J]. Journal of Manufacturing Processes, 2019, 38: 370 − 386. doi: 10.1016/j.jmapro.2019.01.028
    Derazkola H A, Khodabakhshi F. Underwater submerged dissimilar friction-stir welding of AA5083 aluminum alloy and A441 AISI steel[J]. International Journal of Advanced Manufacturing Technology, 2019, 102: 4383 − 4395. doi: 10.1007/s00170-019-03544-1
    Patel V, Li W Y, Liu X C, et al. Tailoring grain refinement through thickness in magnesium alloy via stationary shoulder friction stir processing and copper backing plate[J]. Materials Science and Engineering A, 2020, 784: 139322. doi: 10.1016/j.msea.2020.139322
  • Related Articles

    [1]LUO Jingyue, LI Xiaobo, LIU Xiaochao, SHI Lei, SHEN Zhikang, PEI Xianjun, NI Zhonghua. Effect of tool rotation speed on microstructure and mechanical properties of Al/steel vortex flow-based friction stir lap welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(2): 127-135. DOI: 10.12073/j.hjxb.20240906002
    [2]DONG Shaokang, MA Yuhang, ZHU Hao, WANG Chenji, CAO Zhilong, WANG Jun. Effect of Ni interlayer on microstructure of aluminum/magnesium dissimilar metal friction stir welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 84-89. DOI: 10.12073/j.hjxb.20211202002
    [3]XU Xinxin, LIANG Xiaoguang, YANG Ruisheng, YAN Dongyang, ZHOU Li. Effect of welding residual stress on bearing capacity of fusion welded joint of 2219 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 17-22. DOI: 10.12073/j.hjxb.20200403004
    [4]ZHAO Zhili<sup>1</sup>, WANG Guanglin<sup>1</sup>, ZHANG Yuanjian<sup>1</sup>, FANG Hongyuan<sup>2</sup>. Homogenization capacity of welding residual stress in under-matching ELCC butt joint of high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 111-114. DOI: 10.12073/j.hjxb.2018390186
    [5]QIAO Guiying, LIU Yumeng, HAN Xiulin, WANG Xu, XIAO Furen. Simulation study on effects of geometry size of weld joint on bearing capacity of steel pipe[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(3): 33-36.
    [6]LIU Yong, WANG Ping, MA Ran, DONG Pingsha, FANG Hongyuan. Fatigue property of aluminum non-load bearing cruciform joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 83-86.
    [7]LIN Yitong, WANG Dongpo, WANG Ying. Effect of welding on bearing capacity of launch vehicle tank based on Neuber formula[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(1): 51-54.
    [8]ZHAO Zhili, FANG Hongyuan, YANG Jianguo, XU Xiaojun, HU Jichao. A design method of equal load-carrying capacity for undermatching weld joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (4): 87-90.
    [9]ZHANG Deku, WANG Kehong, ZHANG Jing, ZHAO Nan. Effect of process parameters on strengthening of steel surface with Fe-Al intermetallic compounds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (12): 85-88.
    [10]GUI Chibin, WANG Zheng, WEN Jiancheng. Hydrogen dissolving capacity in slag and diffusible hydrogen in deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 54-56.
  • Cited by

    Periodical cited type(2)

    1. 杨泽坤,徐锴,杨战利,张焱,费大奎,周坤,杨永波. 缆式焊丝GMAW焊缝截面侧偏行为机理分析. 焊接学报. 2024(01): 83-87+134 . 本站查看
    2. 赵文勇,胥国祥. 基于数值模拟技术的焊接结构学课程教学改革研究. 造纸装备及材料. 2024(11): 254-256 .

    Other cited types(7)

Catalog

    Article views (745) PDF downloads (114) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return