Citation: | LUO Jingyue, LI Xiaobo, LIU Xiaochao, SHI Lei, SHEN Zhikang, PEI Xianjun, NI Zhonghua. Effect of tool rotation speed on microstructure and mechanical properties of Al/steel vortex flow-based friction stir lap welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(2): 127-135. DOI: 10.12073/j.hjxb.20240906002 |
The aluminum/steel vortex flow-based friction stir lap welding technology was used to weld 5083 aluminum alloy and 304 stainless steel. The effect of tool rotation speed on the macroscopic morphology, microstructure and mechanical properties of the joint was investigated, and the relationship between the interface microstructure and the tensile shear properties of the joint was clarified. The experimental results show that the weld surface is well formed at low and medium rotation speeds, and point defects appear on the weld surface at a high rotation speed of 600 r/min. The aluminum/steel lap interface is flat, tightly bonded, and has no hook defects. The interface is metallurgically bonded through intermetallic compounds and diffusion layers, and the elements of the steel side diffuse to the aluminum side across the intermetallic compound layer. At a rotation speed of 200 r/min, a nanoscale intermetallic compound layer is formed on the interface, and the tensile shear ultimate line load of the joint is the highest, reaching 479.5 N/mm. As the rotation speed increases to 400 r/min, the intermetallic compound layer on the interface thickens to about 1.2 ~ 1.3 µm, resulting in a decrease in the tensile shear ultimate line load of the joint to 332.8 N/mm. When the rotation speed continues to increase to 600 r/min, the thickness of the intermediate layer at the aluminum/steel interface is basically unchanged, and the tensile shear ultimate line load of the joint increases to 411.4 N/mm, which may be due to the partial amorphization of the intermetallic compounds in the interlayer.
[1] |
余腾义, 李伟, 喻高扬, 等. CMT熔钎焊工艺对铝/钢异种金属焊接接头组织及性能的影响[J]. 钢铁钒钛, 2023, 44(5): 188 − 194.
Yu Tengyi, Li Wei, Yu Gaoyang, et al. Processing parameters, microstructures and mechanical property of Al/teel dissimilar metals butt joint made by CMT welding-brazing[J]. Iron Steel Vanadium Titanium, 2023, 44(5): 188 − 194.
|
[2] |
Zhang T, Hao Z Y, Wang K, et al. Effect of Ni interlayer on interfacial microstructure and fatigue behavior of friction stir lap welded 6061 aluminum alloy and QP1180 steel[J]. International Journal of Fatigue, 2024, 180: 108096. doi: 10.1016/j.ijfatigue.2023.108096
|
[3] |
Xia H B, Li L, Tan C, et al. In situ SEM study on tensile fractured behavior of Al/steel laser welding-brazing interface[J]. Materials & Design, 2022, 224: 111320.
|
[4] |
Liu X C, Zhen Y Q, Shen Z K, et al. A modified friction stir welding process based on vortex material flow[J]. Chinese Journal of Mechanical Engineering, 2020, 33: 90. doi: 10.1186/s10033-020-00499-3
|
[5] |
刘小超, 甄云乾, 何欣沅, 等. 基于同质摩擦的涡流搅拌摩擦焊工艺[J]. 航空学报, 2022, 43(2): 117 − 125.
Liu Xiaochao, Zhen Yunqian, He Xinyuan, et al. Vortex-friction stir welding process based on internal friction between identical materials[J]. Acta Aeronauticaet Astronautica Sinica, 2022, 43(2): 117 − 125.
|
[6] |
Liu X C, Wang Q, Pei X J, et al. Microstructural evolution of 6061-T6 aluminum alloy in vortex- friction stir welding[J]. Materials Characterization, 2023, 195: 112544. doi: 10.1016/j.matchar.2022.112544
|
[7] |
Liu X C, Li W T, Zhen Y Q, et al. Effect of process parameters on weld quality in vortex- friction stir welding of 6061-T6 aluminum alloy[J]. Materials, 2023, 16(2): 873. doi: 10.3390/ma16020873
|
[8] |
罗璟玥, 周咏琦, 刘小超, 等. 5083铝合金与304不锈钢异种材料涡流搅拌摩擦搭接焊工艺研究[J]. 电焊机, 2023, 53(3): 62 − 71.
Luo Jingyue, Zhou Yongqi, Liu Xiaochao, et al. Vortex-friction stir lap welding of 5083 aluminum alloy/304 stainless steel dissimilar materials[J]. Electric Welding Machine, 2023, 53(3): 62 − 71.
|
[9] |
Safeen M W, Russo Spena P. Main issues in quality of friction stir welding joints of aluminum alloy and steel sheets[J]. Metals, 2019, 9(5): 610. doi: 10.3390/met9050610
|
[10] |
龙玲, 史清宇, 刘铁, 等. 搅拌摩擦焊接材料流动模型及在缺陷预测中的应用[J]. 焊接学报, 2019, 40(1): 84 − 88. doi: 10.12073/j.hjxb.2019400017
Long Ling, Shi Qingyu, Liu Tie, et al. Modeling of material flow during friction stir welding and the application for defect prediction[J]. Transactions of the China Welding Institution, 2019, 40(1): 84 − 88. doi: 10.12073/j.hjxb.2019400017
|
[11] |
Yao H N, Wen H Y, Chen K, et al. Interfacial phases formed in friction stir lap welding high entropy alloy to Al alloy[J]. Scripta Materialia, 2021, 201: 113972. doi: 10.1016/j.scriptamat.2021.113972
|
[12] |
张昌青, 王树文, 罗德春, 等. 工艺参数对铝/钢旋转摩擦焊接头组织的影响[J]. 有色金属工程, 2002, 12(2): 8 − 13,74.
Zhang Changqing, Wang Shuwen, Luo Dechun, et al. Influence of process parameters on structure of aluminum/steel rotary friction welding joints[J]. Nonferrous Metals Engineering, 2002, 12(2): 8 − 13,74.
|
[13] |
Liu H W, Guo C, Cheng Y, et al. Interfacial strength and structure of stainless steel–semi-solid aluminum alloy clad metal[J]. Materials Letters, 2006, 60(2): 180 − 184. doi: 10.1016/j.matlet.2005.08.015
|
[14] |
Mehrer H. Diffusion in solids [M]. Berlin, Heidelberg: Springer, 2007.
|
[15] |
Kobayashi S, Yakou T. Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment[J]. Materials Science and Engineering: A, 2002, 338(1): 44 − 53.
|
[16] |
Liu X C, Luo J Y, Bao W H, et al. Improved mechanical properties of SUS304/AA5083 dissimilar joint by laser ablation pretreatment in vortex- friction stir lap welding[J]. Crystals, 2023, 13(9): 1336. doi: 10.3390/cryst13091336
|
[17] |
Jabraeili R, Jafarian H R, Khajeh R, et al. Effect of FSW process parameters on microstructure and mechanical properties of the dissimilar AA2024 Al alloy and 304 stainless steel joints[J]. Materials Science and Engineering: A, 2021, 814: 140981. doi: 10.1016/j.msea.2021.140981
|
[18] |
Yang J, Su J H, Gao C K, et al. Effect of heat input on interfacial microstructure, tensile and bending properties of dissimilar Al/steel lap joints by laser welding-brazing[J]. Optics & Laser Technology, 2021, 142: 107218.
|
[19] |
Peng M J, Liu H B, Liang Y, et al. CMT welding-brazing of al/steel dissimilar materials using cycle-step mode[J]. Journal of Materials Research and Technology, 2002, 18: 1267 − 80.
|
[20] |
Geng P H, Morimura M, Ma H, et al. Elucidation of intermetallic compounds and mechanical properties of dissimilar friction stir lap welded 5052 Al alloy and DP590 steel[J]. Journal of Alloys and Compounds, 2022, 906: 164381. doi: 10.1016/j.jallcom.2022.164381
|
[21] |
Joshani E, Beidokhti B, Davodi A, et al. Evaar 7075 aluminum/AISI 304 stainless steel joints using friction stir welding[J]. Journal of Alloys and Metallurgical Systems, 2023, 3: 100017. doi: 10.1016/j.jalmes.2023.100017
|
[22] |
Kimapong K, Watanabe T. Lap joint of A5083 aluminum alloy and SS400 steel by friction stir welding[J]. Materials Transactions, 2005, 46(4): 835 − 841. doi: 10.2320/matertrans.46.835
|
[23] |
Suryanarayana C. Mechanical alloying and milling[J]. Progress in Materials Science, 2001, 46(1): 1 − 184.
|
[24] |
Ogura T, Saito Y, Nishida T, et al. Partitioning evaluation of mechanical properties and the interfacial microstructure in a friction stir welded aluminum alloy/stainless steel lap joint[J]. Scripta Materialia, 2012, 66(8): 531 − 534. doi: 10.1016/j.scriptamat.2011.12.035
|
[25] |
Sun Y F, Fujii H, Takaki N, et al. Microstructure and mechanical properties of dissimilar Al alloy/steel joints prepared by a flat spot friction stir welding technique[J]. Materials & Design, 2013, 47: 350 − 357.
|
[26] |
Ma L H, Xu Z Y, Zhang T, et al. In-situ formed amorphous phase in aluminum/steel friction stir welds: Interface evolution and strength improvement[J]. Journal of Advanced Joining Processes, 2024, 9: 100220. doi: 10.1016/j.jajp.2024.100220
|