Advanced Search
DONG Shaokang, MA Yuhang, ZHU Hao, WANG Chenji, CAO Zhilong, WANG Jun. Effect of Ni interlayer on microstructure of aluminum/magnesium dissimilar metal friction stir welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 84-89. DOI: 10.12073/j.hjxb.20211202002
Citation: DONG Shaokang, MA Yuhang, ZHU Hao, WANG Chenji, CAO Zhilong, WANG Jun. Effect of Ni interlayer on microstructure of aluminum/magnesium dissimilar metal friction stir welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 84-89. DOI: 10.12073/j.hjxb.20211202002

Effect of Ni interlayer on microstructure of aluminum/magnesium dissimilar metal friction stir welding joint

More Information
  • Received Date: December 01, 2021
  • Available Online: November 21, 2022
  • The flat butt welding tests were carried out on 6061 aluminum alloy and AZ31 magnesium alloy with the thickness of 4 mm by introducing 0.05 mm Ni foil interlayer under the condition of constant travel speed and different rotation speeds using the friction stir welding (FSW) technology. The effects of rotation speeds on the distribution of Ni foil particles, the types and distribution of the intermetallic compounds (IMCs) and the strength of the joints were investigated by series of microstructure characterization and mechanical property tests. The results showed that compared to the joint without Ni, the introduction of Ni foil interlayer changed the types and distribution of IMCs in the weld nugget zone (WNZ). In WNZ, there was an obvious banded structure between magnesium alloy and aluminum alloy on which the flocculent Al12Mg17, granular Mg2Ni, lamellar Al3Mg2, and Ni foil particles of varying sizes were distributed. With the increasing of rotation speed, the distribution of Ni became more uniform, while the Al3Mg2 decreased relatively, and the distribution of the brittle Al3Mg2 gradually changed from continuous to intermittent. The tensile strength of the joint reached the maximum value when the rotation speed was 750 r/min. Compared to the joint without Ni, the tensile strength of the joint with the introduction of Ni foil interlayer was increased by 56 MPa, which was 56.9% of the strength of magnesium alloy.
  • Zhao Y, Lu Z P, Yan K, et al. Microstructural characterizations and mechanical properties in underwater friction stir welding of aluminum and magnesium dissimilar alloys[J]. Materials & Design, 2015, 65: 675 − 681.
    陈影, 沈长斌, 葛继平. Mg/Al异种金属焊接的研究现状[J]. ·稀有金属材料与工程, 2012, 41(supplement 2): 109 − 11.

    Chen Ying, Shen Changbin, Ge Jiping. Research progress on the welding of Mg/Al dissimilar metals[J]. Rare Metal Materials and Engineering, 2012, 41(supplement 2): 109 − 11.
    Dorbane A, Mansoor B, Ayoub G, et al. Mechanical, microstructural and fracture properties of dissimilar welds produced by friction stir welding of AZ31B and Al6061[J]. Materials Science & Engineering A, 2015, 650: 720 − 733.
    Rao H M, Ghaffari B, Yuan W, et al. Effect of process parameters on microstructure and mechanical behaviors of friction stir linear welded aluminum to magnesium[J]. Materials Science & Engineering A, 2016, 651: 27 − 36.
    Fu B L, Qin G L, Li F. Friction stir welding process of dissimilar metals of 6061-T6 aluminum alloy to AZ31B magnesium alloy[J]. Journal of Materials Processing Technology, 2015, 218: 38 − 47. doi: 10.1016/j.jmatprotec.2014.11.039
    Mo S X, Dong S K, Zhu H, et al. Corrosion behavior of aluminum/steel dissimilar metals friction stir welding joint[J]. China Welding, 2021, 30(3): 20 − 30.
    许志武, 李政玮, 冯艳, 等. 静轴肩辅助铝镁搅拌摩搭接接头的组织与性能[J]. 焊接学报, 2017, 38(4): 1 − 6.

    Xu Zhiwu, Li Zhengwei, Feng Yan, et al. Microstructure and mechanical properties of Mg/Al friction stir lap welding joint assisted by stationary shoulder[J]. Transactions of the China Welding Institution, 2017, 38(4): 1 − 6.
    李达, 孙明辉, 崔占全. 工艺参数对铝镁搅拌摩擦焊焊缝成形质量的影响[J]. 焊接学报, 2011, 32(8): 97 − 100.

    Li Da, Sun Minghui, Cui Zhanquan. Effect of parameters on friction stir welding joint of Al and Mg[J]. Transactions of the China Welding Institution, 2011, 32(8): 97 − 100.
    Verma J, Taiwade R V, Reddy C, et al. Effect of friction stir welding process parameters on Mg-AZ31B/Al-AA6061 joints[J]. Materials and Manufacturing Processes, 2018, 33(3): 308 − 314. doi: 10.1080/10426914.2017.1291957
    Sachin K, Wu C S. Suppression of intermetallic reaction layer by ultrasonic assistance during friction stir welding of Al and Mg based alloys[J]. Journal of Alloys and Compounds, 2020, 827: 154343. doi: 10.1016/j.jallcom.2020.154343
    Boccarusso L, Astarita A, Carlone P, et al. Dissimilar friction stir lap welding of AA 6082-Mg AZ31: Force analysis and microstructure evolution[J]. Journal of Manufacturing Processes, 2019, 44: 376 − 388. doi: 10.1016/j.jmapro.2019.06.022
    Sun T, Wu S Y, Shen Y F, et al. Effect of traverse speed on the defect characteristic, microstructure, and mechanical property of friction stir welded T-joints of dissimilar Mg/Al alloy[J]. Advances in Materials Science and Engineering, 2020, 2020(3): 1 − 15.
    Bandi A, Bakshi S R. Effect of pin length and rotation speed on the microstructure and mechanical properties of friction stir welded lap joints of AZ31B-H24 Mg alloy and AA6061-T6 Al alloy[J]. Metallurgical and Materials Transactions A, 2020, 51(12): 6269 − 6282. doi: 10.1007/s11661-020-06020-8
    Niu S Y, Ji S D, Yan D J, et al. AZ31B/7075-T6 alloys friction stir lap welding with a zinc interlayer[J]. Journal of Materials Processing Technology, 2019, 263: 82 − 90. doi: 10.1016/j.jmatprotec.2018.08.009
    Gan R G, Jin Y H. Friction stir-induced brazing of Al/Mg lap joints with and without Zn interlayer[J]. Science and Technology of Welding and Joining, 2018, 23(2): 164 − 171. doi: 10.1080/13621718.2017.1354545
    Zheng B, Zhao L, Lv Q Q, et al. Effect of Sn interlayer on mechanical properties and microstructure in Al/Mg friction stir lap welding with different rotational speeds[J]. Materials Research Express, 2020, 7(7): 076504. doi: 10.1088/2053-1591/ab9fbb
    Liu J L, Niu S Y, Ren R, et al. Improving joint morphologies and tensile strength of Al/Mg dissimilar alloys friction stir lap welding by changing zn interlayer thickness[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(11): 1385 − 1395. doi: 10.1007/s40195-019-00937-9
    Zhang J, Luo G Q, Wang Y Y, et al. An investigation on diffusion bonding of aluminum and magnesium using a Ni interlayer[J]. Materials Letters, 2012, 83: 189 − 191. doi: 10.1016/j.matlet.2012.06.014
    Shi H, Chen K, Liang Z Y, et al. Intermetallic compounds in the banded structure and their effect on mechanical properties of Al/Mg dissimilar friction stir welding joints[J]. Journal of Materials Science and Technology, 2017, 33(4): 359 − 366. doi: 10.1016/j.jmst.2016.05.006
    朱浩, 张二龙, 莫淑娴, 等. 带状组织对铝/镁异种金属搅拌摩擦焊接头力学性能的影响[J]. 焊接学报, 2020, 41(1): 34 − 38,66.

    Zhu Hao, Zhang Erlong, Mo Shuxian, et al. Effect of banded structure on mechanical properties of aluminum/magnesium dissimilar metal friction stir welding joint[J]. Transactions of the China Welding Institution, 2020, 41(1): 34 − 38,66.
    Dupin N, Ansara I, Sundman B. Thermodynamic re-assessment of the ternary system Al-Cr-Ni[J]. Calphad, 2001, 25(2): 279 − 298. doi: 10.1016/S0364-5916(01)00049-9
    Peng P, Wang W, Zhang T, et al. Effects of interlayer metal on microstructures and mechanical properties of friction stir lap welded dissimilar joints of magnesium and aluminum alloys[J]. Journal of Materials Processing Technology, 2021, 299: 117362.
    Hajjari E, Divandari M, Razavi S H, et al. Dissimilar joining of Al/Mg light metals by compound casting process[J]. Journal of Materials Science, 2011, 46(20): 6491 − 6499. doi: 10.1007/s10853-011-5595-4
    Chang W S, Rajesh S R, Chun C K, et al. Microstructure and mechanical properties of hybrid laser-friction stir welding between AA6061-T6 Al alloy and AZ31 Mg alloy[J]. Journal of Materials Science and Technology, 2011, 27(3): 199 − 204. doi: 10.1016/S1005-0302(11)60049-2
  • Related Articles

    [1]CHEN Shujin, HE Yabin, XU Yang, TIAN Xiongwen, ZHAO Haoyu. Effect of interlayer on interface microstructure and properties of Al/Mg friction stir welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(2): 46-54. DOI: 10.12073/j.hjxb.20240907001
    [2]MA Xiaotian, YAN Dejun, MENG Xiangchen, WAN Long, HUANG Yongxian. Progress on the control of intermetallic compounds in aluminum/steel friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(7): 1-11. DOI: 10.12073/j.hjxb.20200617001
    [3]LIU Shuying, ZHANG Dongdong, LIU Yazhou, SUN Yanyan. Analysis of growth behavior of intermetallic compound in diffusion bonding of Ti alloy/Cu/stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 133-138. DOI: 10.12073/j.hjxb.2019400249
    [4]WANG Jianhua, MENG Gongge, SUN Fenglian. Study on growth rate of interfacial metallic compound in SAC305/Cu joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(5): 47-50,76.
    [5]LIU Ruirui, ZHAO Zhilong, AI Changhui, LI Jingwei, LIU Lin. Microstructure of fusion zone deposited intermetallics CrFeNb on Nickel-base superalloy K4169[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(2): 71-74.
    [6]QIN Fei, AN Tong, ZHONG Weixu, LIU Chengyan. Nanoindentation properties of intermetallic compounds in lead-free solder joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 25-28,32.
    [7]ZHANG Deku, WANG Kehong, ZHANG Jing, ZHAO Nan. Effect of process parameters on strengthening of steel surface with Fe-Al intermetallic compounds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (12): 85-88.
    [8]ZHU Dongmei, WANG Xibao. Mcrostrueture of Fe3A1 intermetallic compound produced by plasma cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 17-19,24.
    [9]HE Peng, FENG Ji-cai, QIAN Yi-yu, ZHANG Jiu-hai. Forming Mechanism of interface intermetallic Compounds for Difusion Bonding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (1): 53-55.
    [10]HE Peng, ZHANG Jiu-hai, FENG Ji-cai, QIAN Yi-yu. Numeric Simulation for Interface Intermetallic Compounds of Phase Transformation Diffusion Bonding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (3): 75-78.
  • Cited by

    Periodical cited type(3)

    1. 陈书锦,何亚斌,徐洋,田雄文,赵浩钰. 中间层对铝/镁搅拌摩擦焊界面组织与性能的影响. 焊接学报. 2025(02): 46-54 . 本站查看
    2. Jian Zhang,Huan Li,Shiying Wu. Research progress of aluminum and magnesium ultrasonic welding. China Welding. 2025(01): 74-84 .
    3. 雷声,崔召杰,李云,张海浪,方继根,张翔. WE43/Zn/1060异种金属搅拌摩擦焊接头组织及性能研究. 兵器材料科学与工程. 2024(02): 64-69 .

    Other cited types(3)

Catalog

    Article views (335) PDF downloads (83) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return