Advanced Search
ZHAO Zhili1, WANG Guanglin1, ZHANG Yuanjian1, FANG Hongyuan2. Homogenization capacity of welding residual stress in under-matching ELCC butt joint of high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 111-114. DOI: 10.12073/j.hjxb.2018390186
Citation: ZHAO Zhili1, WANG Guanglin1, ZHANG Yuanjian1, FANG Hongyuan2. Homogenization capacity of welding residual stress in under-matching ELCC butt joint of high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 111-114. DOI: 10.12073/j.hjxb.2018390186

Homogenization capacity of welding residual stress in under-matching ELCC butt joint of high strength steel

More Information
  • Received Date: April 06, 2017
  • The homogenization of welding residual stress in butt joint of high strength steels is studied by means of finite element software. The results indicate that the peak stress in the all of the welded joints in the transverse and longitudinal tensile process will increase continuously on the basis of welding residual stress due to the insufficient plastic reserve of the base metal, and the stress growth rate in every region of the butt joint is different. Finally, the residual stress is not absolutely homogenized. Due to the cover passes with high plasticity and low yield ratio in the under-matching equal static ELCC joints locate in weld and surface of the near the seam base metal where distributed the peak value of welding residual stress, and share the tensile load, resulting in that the stress growth rate of the base metal zone near seam is slow, therefore, its homogenizing capacities of welding residual stress is better than that of the equal-matching joint. Considering the effect of welding residual stress, the static load failure of ELCC joint is more likely to occur in the base metal zone rather than welding zone, which is consistent with the original design goal. It is clear that the influence of welding residual stress can be neglected in the design of static load ELCC of under-matching butt joint.
  • Rakin M, Gubeljak N, Dobrojevic M. Modeling of ductile fracture initiation in strength mismatched welded joint[J]. Engineering Fracture Mechanics, 2007, 11(75):3499-3510.
    Rakin M, Medjo B, Gubeljak N. Micromechanical assessment of mismatch effects on fracture of high-strength low alloyed steel welded joints[J]. Engineering Fracture Mechanics, 2013(109):221-235.
    赵智力, 方洪渊, 杨建国. 一种针对低匹配焊接接头的"等承载"设计方法[J]. 焊接学报, 2011, 32(4):87-90. Zhao Zhili, Fang Hongyuan, Yang Jianguo. A design method of equal load-carrying capacity for under-matching weld joints[J]. Transactions of the China Welding Institution, 2011, 32(4):87-90.
    Wang T, Yang J G, Liu X S, et al. Solution of stress intensity factor for mode I centre crack in under-matched butt joint with certain reinforcement[J]. Science and Technology of Welding and Joining, 2012, 3(17):191-195.
    周立鹏. 高强钢低匹配等承载对接接头随焊整形可行性研究[D]. 哈尔滨:哈尔滨工业大学, 2011.
    杨建国, 王佳杰, 方洪渊, 等. 随焊冲击碾压整形对低匹配等承载接头硬度与残余应力的影响. 焊接学报, 2013, 34(3):37-40. Yang Jianguo, Wang Jiajie, Fang Hongyuan, et al. Influence of weld shaping with trailing impact rolling on hardness and residual stress of under-matched equal load-carrying joint[J]. Transactions of the China Welding Institution, 2013, 34(3):37-40.
    赵智力, 王光临, 方洪渊. 高强钢低匹配对接接头焊接残余应力对静载强度影响. 焊接学报, 2016, 37(6):114-117. Zhao Zhili, Wang Guanglin, Fang Hongyuan. Influence of residual stress on static load strength of under-matching butt joint of high strength steel[J]. Transactions of the China Welding Institution, 2016, 37(6):114-117.
  • Related Articles

    [1]ZHANG Hua, GUO Qilong, ZHAO Changyu, LIN Sanbao, SHI Gongqi. Influence of two-step aging on structure and stress corrosion sensitivity of friction stir welded 7050-T7451 aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(6): 1-5. DOI: 10.12073/j.hjxb.20190513001
    [2]LI Xinmei1, ZHANG Zhongwen1, DU Baoshuai1, ZOU Yong2, WEI Yuzhong3. Evaluation of susceptibility to ingtergranular corrosion of HR3C steel welded joint by EPR method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 67-71. DOI: 10.12073/j.hjxb.20150627002
    [3]ZHANG Shufang, HAO Yunfei, WANG Xiaomin, CHEN Hui, LIAO Xiaoyao, LI Mingxing. Intergranular corrosion behavior of 2219 aluminum alloy's welding join[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 22-26. DOI: 10.12073/j.hjxb.20170405
    [4]ZHANG Hua, ZHUANG Qianyu, ZHANG He. Analysis of intergranular corrosion of friction stir welded 2219 aluminium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 79-82.
    [5]LU Quanbin, LONG Weimin, WANG Xin, DU Quanbin. Influence of trace Sc on intergranular corrosion properties of Al-Mg-Mn-Cr-Ti alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(7): 97-100.
    [6]BAO Yefeng, REN Qiang, ZHANG Zhixi, YANG Ke, JIANG Yongfeng. Study of intergranular corrosion resistance of overlay by Electroslag cladding with austenitic stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 65-68,79.
    [7]DONG Peng, SUN Daqian, LI Hongmei, WANG Bing. Intergranular corrosion behaviour of friction stir welded joints of 6005A aluminium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(5): 105-108.
    [8]WANG Jing, ZHANG Yiliang, QIU Fei, WU Daowen. Evaluation of stress corrosion of duplex stainless steel overlay[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (2): 49-53.
    [9]LI Xinmei, ZOU Yong, ZHANG Zhongwen, ZOU Zengda. Susceptibility to intergranular corrosion of Super 304H stainless steel welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (11): 77-80.
    [10]ZHANG Tian-hong. Effevt of V on intergranular corrosion resistance of austenite weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (6): 64-66.
  • Cited by

    Periodical cited type(15)

    1. 邓呈敏,张华,程东海,盖晓东,王非凡. 冷喷涂对7050铝合金FSW接头耐应力腐蚀性能的影响. 热加工工艺. 2024(06): 117-121 .
    2. 周平,周林,熊淑秋. 7N01铝合金薄板搅拌摩擦焊接头力学性能研究. 新乡学院学报. 2024(09): 52-55 .
    3. 张卓,李威,刘亚林,刘团,白华颖. 500kV液压弹簧机构频繁打压故障的分析. 高压电器. 2023(10): 240-246 .
    4. 王龙权,周海涛. 7xxx高强铝合金搅拌摩擦焊研究进展. 焊接. 2023(10): 47-54 .
    5. 刘亚林,吴西博,李威,胡润阁,牛田野. 500 kV断路器液压弹簧机构频繁打压故障的分析. 高压电器. 2022(03): 215-220 .
    6. 邵明皓,张健,王渭平,刘德博,郭启龙,张华. AA2219-T87铝合金双轴肩搅拌摩擦焊的腐蚀行为(英文). 稀有金属材料与工程. 2022(05): 1620-1626 .
    7. 回丽,李东澎,宋万万,崔浩,安金岚,王坤宇. 腐蚀环境对搅拌摩擦点焊接结构力学性能的影响. 有色金属工程. 2022(06): 1-7 .
    8. 魏萍,吴铭方,刘大双,董智慧. 7N01铝合金焊接接头腐蚀行为研究进展. 电焊机. 2022(09): 10-17 .
    9. 马青娜,邵飞,白林越,徐倩. 7075铝合金FSW接头腐蚀疲劳性能及断裂特征. 焊接学报. 2020(06): 72-77+101 . 本站查看
    10. 林松,贺晓龙. 7N01铝合金双面搅拌摩擦焊接头的组织与性能. 机械工程材料. 2020(09): 82-86+102 .
    11. 张体明,邓云发,陈玉华,方瑜,胡学兵. 超声冲击对2A12铝合金搅拌摩擦焊接头腐蚀行为的影响. 焊接学报. 2020(10): 38-41+78+99 . 本站查看
    12. 刘方,周广涛,吴世凯,苏礼季,陈梅峰. 基于电化学方法5Cr钢熔化焊接头CO_2腐蚀行为. 焊接学报. 2019(01): 131-136+167 . 本站查看
    13. 卢嘉伟,何晓聪,邓聪,魏文杰. 非金属夹层三明治结构自冲铆接头力学性能. 兵器材料科学与工程. 2019(04): 28-31 .
    14. 孟遥,夏佩云,尹玉环,徐奎,黄征,郭炳. 7085-T7452铝合金搅拌摩擦焊接头组织及性能研究. 电焊机. 2019(08): 55-59 .
    15. 贾爱芹,韩东艳. 均匀化处理对轿车前转向用5A06铝合金电化学腐蚀行为的影响. 材料保护. 2018(11): 101-103+120 .

    Other cited types(6)

Catalog

    Article views (610) PDF downloads (71) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return