Citation: | JIAO Guangchen, ZHAN Yong, WEN Jianfeng. Simulation of fatigue crack growth behavior in welded plates considering different material properties of weld and base metals[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 52-58. DOI: 10.12073/j.hjxb.20221221001 |
Simulation method of fatigue crack growth considering material discontinuity was developed based on Abaqus, Zencrack and relevant user subroutines to accurately describe the fatigue crack growth behavior in welded structures. For initial embedded cracks located in weld region of a welded plate, faitigue crack growth simulations with different matching strengths between weld and base metal were carried out, and the influence of different matching strengths on fatigue crack growth life and characteristic for the welded structure were invesgated. It is found that distinct differences of SIF calculation results are obtained once the crack propagate from weld to base metals. Also, the difference gradually increases with increasing the crack size. As the values of crack growth parameters in weld are increasing, the relative crack growth rate of the crack located in the base metal decreases gradually and the crack shape transits from round to flat. In contrast, the relative crack growth rate in the base metal increases gradually, and the crack shape transits from round to ellipse. The present simulation method can provide an effictive way to accurately predict crack evolution in multi-materials of welded structures.
[1] |
孙环, 贺利乐. 焊接结构件疲劳裂纹扩展的数值研究[J]. 机械科学与技术, 2015, 36(6): 840 − 843.
Sun Huan, He Lile. Numerical study on the fatigue crack propagation of welded structure component[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 36(6): 840 − 843.
|
[2] |
李强, 王波, 李存峥, 等. T型焊接接头中疲劳裂纹扩展的三维边界元模拟[J]. 清华大学学报 (自然科学版), 2002, 42(4): 470 − 473.
Li Qiang, Wang Bo, Li Cunzheng, et al. 3-D simulation of fatigue crack propagation in a T-shaped welded joint using the boundary element method[J]. Journal of Tsinghua University (Science and Technology), 2002, 42(4): 470 − 473.
|
[3] |
闫小顺, 黄小平, 周心桃. 船舶含裂纹焊接结构剩余疲劳寿命可靠性预报[J]. 舰船科学技术, 2016, 38(2): 27 − 31. doi: 10.3404/j.issn.1672-7649.2016.2.006
Yan Xiaoshun, Huang Xiaoping, Zhou Xintao. Reliability prediction of residual fatigue life for cracked details of ship in service[J]. Ship Science and Technology, 2016, 38(2): 27 − 31. doi: 10.3404/j.issn.1672-7649.2016.2.006
|
[4] |
许乐, 温建锋, 涂善东. P92钢焊接接头蠕变损伤与裂纹扩展数值模拟[J]. 焊接学报, 2019, 40(8): 80 − 88. doi: 10.12073/j.hjxb.2019400213
Xu Le, Wen Jianfeng, Tu Shandong. Numerical simulations of creep damage and crack growth in P92 steel welded joints[J]. Transactions of the China Welding Institution, 2019, 40(8): 80 − 88. doi: 10.12073/j.hjxb.2019400213
|
[5] |
肖林, 刘丽芳, 李小珍, 等. 钢桁梁焊接构造细节的疲劳性能及基于XFEM的疲劳寿命评估[J]. 铁道学报, 2018, 40(4): 113 − 119. doi: 10.3969/j.issn.1001-8360.2018.04.016
Xiao Lin, Liu Lifang, Li Xiaozhen, et al. Fatigue performance of weld detail of steel truss girder and fatigue life estimation based on XFEM[J]. Journal of the China Railway Society, 2018, 40(4): 113 − 119. doi: 10.3969/j.issn.1001-8360.2018.04.016
|
[6] |
黄如旭, 黄进浩, 方正权. 焊接结构纵向及横向表面裂纹扩展特性有限元数值模拟[J]. 大连海事大学学报, 2015, 41(1): 49 − 53.
Huang Ruxu, Huang Jinhao, Fang Zhengquan. Finite element numerical simulation on longitudinal and transverse surface crack propagation behavior of welding structure[J]. Journal of Dalian Maritime University, 2015, 41(1): 49 − 53.
|
[7] |
Ramalho A L, Antunes F V, Ferreira J A M. Simulation of crack growth in T-welded joints - residual stress field effect[J]. Procedia Structural Integrity, 2021, 33: 320 − 329. doi: 10.1016/j.prostr.2021.10.039
|
[8] |
Ramalho A L, Antunes F V, Ferreira J A M. Simulation of crack growth in residual stress fields of pre-fatigued T-welded joints repaired by tungsten inert gas: a 3D approach[J]. Procedia Structural Integrity, 2022, 41: 412 − 420. doi: 10.1016/j.prostr.2022.05.047
|
[9] |
Leonetti D, Maljaars J, Snijder H. Fracture mechanics based fatigue life prediction for a weld toe crack under constant and variable amplitude random block loading—Modeling and uncertainty estimation[J]. Engineering Fracture Mechanics, 2021, 242: 107487. doi: 10.1016/j.engfracmech.2020.107487
|
[10] |
Ribeiro H V, Baptista C P, Lima M F, et al. Effect of laser welding heat input on fatigue crack growth and CTOD fracture toughness of HSLA steel joints[J]. Journal of Materials Research and Technology, 2021, 11: 801 − 810. doi: 10.1016/j.jmrt.2021.01.038
|
[11] |
Bakir N, Ustundag O, Gumenyuk A, et al. Influence of the weld pool geometry on solidification cracking in partial penetration high power laser beam welding[J]. Procedia CIRP, 2022, 111: 397 − 400. doi: 10.1016/j.procir.2022.08.174
|
[12] |
Hemer A M, Sedmak S A, Milovic L, et al. FEM simulation of welded joint geometry influence on fatigue crack growth resistance[J]. Procedia Structural Integrity, 2020, 28: 1827 − 1832. doi: 10.1016/j.prostr.2020.11.005
|
[13] |
Jacob A, Mehmanparast A, D’Urzo R. Experimental and numerical investigation of residual stress effects on fatigue crack growth behaviour of S355 steel weldments[J]. International Journal of Fatigue, 2019, 128: 105196. doi: 10.1016/j.ijfatigue.2019.105196
|
[14] |
Kim W G, Sah I, Kim S J, et al. Creep and creep crack growth behaviors for base, weld, and heat affected zone in a grade 91 weldment[J]. Nuclear Engineering and Technology, 2021, 53: 572 − 582. doi: 10.1016/j.net.2020.07.015
|
[15] |
Jacob A, Mehmanparas A T. Crack growth direction effects on corrosion-fatigue behaviour of offshore wind turbine steel weldments[J]. Marine Structures, 2021, 75: 102881. doi: 10.1016/j.marstruc.2020.102881
|
[16] |
Mao G, Niffenegger M. Probabilistic and deterministic investigation on single crack growth in dissimilar metal welds of a piping system[J]. International Journal of Pressure Vessels and Piping, 2022, 195: 104566. doi: 10.1016/j.ijpvp.2021.104566
|
[17] |
Ragab R, Parker J, Li M, et al. Creep crack growth modelling of Grade 91 vessel weldments using a modified ductility based damage model[J]. European Journal of Mechanics / A Solids, 2022, 91: 104424. doi: 10.1016/j.euromechsol.2021.104424
|
[18] |
BS7910. Guide to methods for assessing the acceptability of flaws in metallic structures[S]. London: The British Standards Institution, 2019.
|
[19] |
Shen W, Yan R, Liu E, et al. Fatigue growth behavior for surface crack in welding joints under combined compressive and bending stresses[J]. International Journal of Fatigue, 2015, 77: 50 − 63. doi: 10.1016/j.ijfatigue.2015.03.005
|
[1] | QIAO Ruilin, LONG Weimin, QIN Jian, LIAO Zhiqian, FAN Xigang, WEI Yongqiang. Numerical simulation of residual stress in YG8/GH4169 dissimilar material brazed joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 68-74. DOI: 10.12073/j.hjxb.20230520001 |
[2] | GUO Shaoqing, WU Shibiao, XIONG Huaping, CHEN Bo. Numerical simulation of residual stresses in brazed ring joint between SiO2f/SiO2 composite and Nb metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(3): 67-70. |
[3] | FANG Kun, WANG Chuanwei, LIANG Ning, WANG Guochao, CONG Qian. Stress analysis and optimum design of T/R box by seal welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 19-22. |
[4] | LIU Bin, CHEN Shujin, DONG Shiyun, FANG Chenfu, HU Qingxian, GUO Yu. Stress measurement of laser cladded ferromagnetic coating with metal magnetic memory[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 23-26. |
[5] | LI Ju, GUAN Qiao, SHI Yaowu. Investigation on welding stress and strain of titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (3): 53-56,60. |
[6] | LI Ju, GUAN Qiao, SHI Yaowu, GUO Delun. Stress-strain cycles of titanium alloy welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (11): 105-107. |
[7] | WU Ming-fang, ZHOU Xiao-li, MA Cheng, YANG Pei. Numerical calculations of residual stress in Ti(C, N) 40Cr brazed joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (12): 65-68. |
[8] | CAO Jian, FENG Ji-cai, LI Zhuo-ran. Numerical simulation of thermal/residual stresses in brazed Ti/TiAi joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (1): 5-8. |
[9] | LIZhuo ran, CAOJian, FENGJi cai. FEM analysis of thermal/residual stresses in brazing TiB2 cermet/TiAl joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 1-4. |
[10] | Wang Yirong, Che Xiaoli. Effect of stress relief tempering on HAZ toughness in HSLA steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (3): 149-154. |
1. |
申小成,刘竹. 梯田水稻作业智能机械化集成关键技术研究. 黑龙江科学. 2025(08): 146-149 .
![]() |