Citation: | WEI Shitong, SUN Jian, LIU Jingwu, LU Shanping. Effect of V content and tempering treatment on microstructure and mechanical properties of the high strength steel TIG weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(11): 1-6. DOI: 10.12073/j.hjxb.20200116001 |
文明月, 董文超, 庞辉勇, 等. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501 − 511.
Wen Mingyue, Dong Wenchao, Pang Huiyong, et al. Microstructure and Impact toughness of welding heat-affected zones of a Fe-Cr-Ni-Mo high strength steel[J]. Acta Metallurgica Sinica, 2018, 54(4): 501 − 511.
|
王长军, 梁剑雄, 刘振宝, 等. 亚稳奥氏体对低温海工用钢力学性能的影响与机理[J]. 金属学报, 2016, 52(4): 385 − 393. doi: 10.11900/0412.1961.2015.00312
Wang Changjun, Liang Jianxiong, Liu Zhenbao, et al. Effect of metastable austenite on mechanical property and mechanism in cryogenic steel applied in oceaneering[J]. Acta Metallurgica Sinica, 2016, 52(4): 385 − 393. doi: 10.11900/0412.1961.2015.00312
|
Zhou Yanlei, Jia Tao, Zhang Xiangjun, et al. Microstructure and toughness of the CGHAZ of an offshore platform steel[J]. Journal of Materials Processing Technology, 2015, 219: 314 − 320. doi: 10.1016/j.jmatprotec.2014.12.017
|
张熹, 张楠, 刘宏, 等. 母材熔合作用对EQ51海工钢焊缝组织及韧性的影响[J]. 焊接学报, 2016, 37(12): 125 − 128.
Zhang Xi, Zhang Nan, Liu Hong, et al. Fusion effect on weld joint microstructure and toughness of EQ51 ocean engineering steel[J]. Transactions of the China Welding Institution, 2016, 37(12): 125 − 128.
|
Li Hongliang, Liu Duo, Tang Dongyan, et al. Microstructure and mechanical properties of E36 steel joint welded by underwater wet welding[J]. China Welding, 2016, 25(1): 30 − 35.
|
Haslberger P, Holly S, Ernst W, et al. Microstructure and mechanical properties of high-strength steel welding consumables with a minimum yield strength of 1100 MPa[J]. Journal of Materials Science, 2018, 53(9): 6968 − 6979. doi: 10.1007/s10853-018-2042-9
|
Holly S, Haslberger P, Zügner D, et al. Development of high-strength welding consumables using calculations and microstructural characterisation[J]. Welding in the World, 2018, 62(3): 451 − 458. doi: 10.1007/s40194-018-0562-1
|
Ju Yulin, Goodall Aimee, Strangwood Martin, et al. Characterisation of precipitation and carbide coarsening in low carbon low alloy Q & T steels during the early stages of tempering[J]. Materials Science and Engineering: A, 2018, 738: 174 − 189. doi: 10.1016/j.msea.2018.09.044
|
Williamson G K, Smallman R E. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum[J]. Philosophical Magazine, 1956, 1(1): 34 − 46. doi: 10.1080/14786435608238074
|
Yan Jiacheng, Xu Hongwei, Zuo Xiaowei, et al. Strategies for strengthening-ductility and hierarchical co-precipitation in multicomponent nano-precipitated steels by Cu partitioning[J]. Materials Science and Engineering: A, 2019, 739: 225 − 234. doi: 10.1016/j.msea.2018.10.036
|
Xu S S, Zhao Y, Chen D, et al. Nanoscale precipitation and its influence on strengthening mechanisms in an ultra-high strength low-carbon steel[J]. International Journal of Plasticity, 2019, 113: 99 − 110. doi: 10.1016/j.ijplas.2018.09.009
|
[1] | ZHAO Qiu, TANG Kun, LI Yinghao, WU Weiqing. Fatigue crack initiation simulation of weld toe based on the Roe-Siegmund cyclic cohesive zone model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 61-67. DOI: 10.12073/j.hjxb.20230317003 |
[2] | ZHONG Guangsheng, WEI Guoqian, YAN Mengyu, FENG Zibin. Study on the influence of weld toe radius on the evolution behavior of fatigue short cracks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 88-95. DOI: 10.12073/j.hjxb.20221212004 |
[3] | JIAO Guangchen, ZHAN Yong, WEN Jianfeng. Simulation of fatigue crack growth behavior in welded plates considering different material properties of weld and base metals[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 52-58. DOI: 10.12073/j.hjxb.20221221001 |
[4] | ZHAO Yangyang, LIN Kexin, WANG Ying, GONG Baoming. Fatigue crack initiation behavior of additive manufacturing components based on dislocation model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 1-8. DOI: 10.12073/j.hjxb.20220825001 |
[5] | WEI Guoqian, CHEN Siwen, YU Xi, CHENG Lifu. Experimental and simulation study on multiple cracks of weld toe[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 75-81. DOI: 10.12073/j.hjxb.2019400291 |
[6] | GUO Wei, ZHAO Lei, XU Lianyong, HAN Yongdian. The analysis of multiple surface cracks growth behavior under the interaction of creep cracks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 44-49. DOI: 10.12073/j.hjxb.2019400207 |
[7] | YU Xi, WEI Guoqian, LI Shanshan, YE Fan, CHEN Siwen. Numerical simulation analysis of crack propagation in weld toe considering multiple cracks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 88-93. DOI: 10.12073/j.hjxb.2019400187 |
[8] | YU Xi, WEI Guoqian, LI Shanshan, CHEN Siwen. Numerical simulation analysis of crack propagation in weld toe considering aspect ratio[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 107-112,125. DOI: 10.12073/j.hjxb.2019400136 |
[9] | LIU Ren-pei, DONG Zu-jue, PAN Yong-ming. Dynamic cracking behaviors of weld solidification cracks for aluminum alloys at elevated temperature[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (10): 9-13. |
[10] | ZHANG Hai-quan, ZHANG Yan-hua, LI Liu-he, MA Xiang-sheng. Influence of Mechanical Mis-match on Fatigue Crack Growth Behavior of Electron Beam Welded Joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (3): 40-43. |