Advanced Search
JIA Jinlong, ZHAO Yue, DONG Mingye, WU Aiping, LI Quan. Numerical simulation on residual stress and deformation for WAAM parts of aluminum alloy based on temperature function method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 1-6. DOI: 10.12073/j.hjxb.2019400226
Citation: JIA Jinlong, ZHAO Yue, DONG Mingye, WU Aiping, LI Quan. Numerical simulation on residual stress and deformation for WAAM parts of aluminum alloy based on temperature function method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 1-6. DOI: 10.12073/j.hjxb.2019400226

Numerical simulation on residual stress and deformation for WAAM parts of aluminum alloy based on temperature function method

More Information
  • Received Date: February 27, 2019
  • Wire arc additive manufacture (WAAM) is a new way to fabricate large-scale complex aluminum alloy components, but the performance of the parts is critically influenced by residual stresses and deformation. A sequentially thermal-mechanical coupled model of residual stress and deformation for aluminum alloy WAAM parts was established based on commercial FE software ABAQUS. The temperature field was calculated by the moving heat source (MHS) method. The temperature function was obtained according to the distribution of the peak temperature. Furthermore, the MHS method and segmented temperature function (STF) method were used to calculate the residual stress and deformation. The results show that the STF method satisfies both the efficiency and accuracy requirements. 1-segment, 3-segment, and 5-segment STF methods can shorten the time for mechanical analysis by 91%, 79%, 63%, respectively. The error of the residual stress and deformation are all less than 20%. STF method provides an effective way to predict the residual stress and deformation of large-scale WAAM parts.
  • Debroy T, Wei H, Zuback J, et al. Additive manufacturing of metallic components-process, structure and properties[J]. Progress in Materials Science, 2017, 92:112-224.
    Sames W J, List F A, Pannala S, et al. The metallurgy and processing science of metal additive manufacturing[J]. International Materials Reviews, 2016, 61(5):1-46.
    Yang Q, Pu Z, Lin C, et al. Finite element modeling and validation of thermomechanical behavior of Ti-6Al-4V in directed energy deposition additive manufacturing[J]. Additive Manufacturing, Part B, 2016, 12:169-177.
    Dunbar A J, Denlinger E R, Heigel J, et al. Development of experimental method for in situ distortion and temperature measurements during the laser powder bed fusion additive manufacturing process[J]. Additive Manufacturing, Part A, 2016, 12:25-30.
    Biegler M, Graf B, Rethmeier M. In-situ distortions in LMD additive manufacturing walls can be measured with digital image correlation and predicted using numerical simulations[J]. Additive Manufacturing, 2018, 20:101-110.
    Xie R, Zhao Y, Chen G, et al. The full-field strain distribution and the evolution behavior during additive manufacturing through in-situ observation[J]. Materials&Design, 2018, 150:49-54.
    Michaleris P. Modeling metal deposition in heat transfer analyses of additive manufacturing processes[J]. Finite Elements in Analysis and Design, 2014, 86(13):51-60.
    Ding J, Colegrove P, Mehnen J, et al. Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts[J]. Computational Materials Science, 2011, 50(12):3315-3322.
    Ding J, Colegrove P, Mehnen J, et al. A computationally efficient finite element model of wire and arc additive manufacture[J]. The International Journal of Advanced Manufacturing Technology, 2014, 70(1-4):227-236.
    陈嵩涛,段庆林,王依宁,等.选区激光烧结过程传热分析的高效无网格法[J].机械工程学报, 2019, 55(7):135-146 Chen Songtao, Duan Qinglin, Wang Yining, et al. Efficient meshfree method for heat conduction in selective laser sintering process[J]. Journal of Mechanical Engineering, 2019, 55(7):135-146
    Michaleris P, Zhang L, Bhide S R, et al. Evaluation of 2D, 3D and applied plastic strain methods for predicting buckling welding distortion and residual stress[J]. Science and Technology of Welding and Joining, 2006, 11(6):707-716.
    鄢东洋,史清宇,吴爱萍,等.焊接数值模拟中以温度为控制变量的高效算法[J].焊接学报, 2009, 30(8):77-80 Yan Dongyang, Shi Qingyu, Wu Aiping, et al. A high-efficiency welding simulation method based on welding temperature[J]. Transactions of the China Welding Institution, 2009, 30(8):77-80
    李艳军,吴爱萍,刘德博,等. 2219铝合金VPTIG焊接残余应力的数值分析[J].清华大学学报自然科学版, 2016(10):1037-1041 Li Yanjun, Wu Aiping, Liu Debo, et al. Numerical simulation of welding residual stresses in VPTIG joints of the 2219 aluminum alloy[J]. Journal of Tsinghua University (Science and Technology), 2016(10):1037-1041
  • Related Articles

    [1]ZHANG Min, ZHANG Wenhui, XIAO Jiming, DONG Yufan, CHU Qiaoling. Numerical simulation of welding residual stress and distortion in T2-Y/Q345 dissimilar materials[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 67-72. DOI: 10.12073/j.hjxb.20191106001
    [2]HUANG Shuang, YANG Xiaoyi, CHEN Hui, ZHU Zongtao, HUANG Ruisheng, LI Liqun. Analysis of deformation and stress of scanning laser wire filling welded 5A06 aluminum alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(2): 87-92. DOI: 10.12073/j.hjxb.20190220001
    [3]XU Hailaing, GUO Xingye, LEI Yongping, LIN Jian, XIAO Rongshi. Residual stress and deformation of ultra-thin 316 stainless steel plate using pulsed laser welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 50-54. DOI: 10.12073/j.hjxb.2019400208
    [4]HUANG Bensheng, CHEN Quan, YANG Jiang, LIU Ge, YI Hongyu. Numerical simulation of welding residual stress and distortion in Q345/316L dissimilar steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 138-144. DOI: 10.12073/j.hjxb.2019400057
    [5]LI Meiyan, HAN Bin, CAI Chunbo, WANG Yong, SONG Lixin. Numerical simulation on temperature and stress fields of laser cladded Ni-based coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(5): 25-28,32.
    [6]MA Ziqi, LIU Xuesong, ZHANG Shiping, HUANG Haixia, FANG Hongyuan. Welding residual stress analysis of high-speed train undercarriage deformation by ultrasonic method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (5): 45-48.
    [7]HOU Pingjun, WANG Hangong, WANG Liuying, YUAN Xiaojing. Numerical simulation on deposition process of duplex thermal barrier coating by plasma spraying[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 97-100,104.
    [8]ZHOU Guangtao, LIU Xuesong, YANG Jianguo, YAN Dejun, FANG Hongyuan. Numerical simulation of welding residual stress for longitudinal straight weld seam for aluminum alloy thin-wall cylinder[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (6): 89-92.
    [9]XU Ji-jin, CHEN Li-gong, NI Chun-zhen. Temperature distribution,deformation and residual stresses of thick plate butt multipass welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (5): 97-100.
    [10]ZHU Yuan-xiang, ZHANG Xiao-fei, Yang bing, Li xiao-mei. The Numeric Simulation of Weld Residual Stress of Several Weld-Repaired Based on Finite Element[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (1): 65-68.
  • Cited by

    Periodical cited type(11)

    1. 庞嘉尧,程伟. 铝合金搅拌摩擦焊接头疲劳性能研究进展. 兵器材料科学与工程. 2025(01): 164-175 .
    2. 金玉花,邢逸初,周子正,吴博. 喷丸改性对7050铝合金FSW接头性能的影响. 材料导报. 2023(10): 169-173 .
    3. 王龙权,周海涛. 7xxx高强铝合金搅拌摩擦焊研究进展. 焊接. 2023(10): 47-54 .
    4. 周韶泽,郭硕,陈秉智,张军,兆文忠. 焊接结构超高周疲劳主S-N曲线拟合及寿命预测方法. 焊接学报. 2022(05): 76-82+118 . 本站查看
    5. 米鹏,王瑞杰,杨庆鹤. 5083铝合金带吻接FSW接头疲劳强度分析. 机械科学与技术. 2021(03): 463-469 .
    6. 张龙,陈东高,张迎迎,戴宇,马良超,王大锋,郭庆虎,何逸凡. 7B52-T6叠层铝合金焊接接头组织及疲劳损伤行为. 兵器材料科学与工程. 2021(02): 126-130 .
    7. 王池权,石亮,张祥春,刘志毅,邵成伟. 焊接缺陷对异种铝合金TIG对接接头疲劳行为的影响. 北京航空航天大学学报. 2021(07): 1505-1514 .
    8. 韦旭,汪建利,汪洪峰. 5052铝合金搅拌摩擦焊接的组织和力学性能. 兵器材料科学与工程. 2020(04): 77-80 .
    9. 马青娜,邵飞,白林越,徐倩. 7075铝合金FSW接头腐蚀疲劳性能及断裂特征. 焊接学报. 2020(06): 72-77+101 . 本站查看
    10. 杨立恒,刘建军,张建国,陈大兵,李成钢. 浅析母线伸缩节焊接接头质量. 焊接技术. 2020(S1): 156-160 .
    11. 张铁浩,杨志斌,张志毅,张海军,史春元. MIG焊叠加对6A01-T5铝合金FSW焊接头组织及性能的影响. 焊接学报. 2020(09): 81-88+96+101 . 本站查看

    Other cited types(5)

Catalog

    Article views (735) PDF downloads (281) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return