Advanced Search
YUAN Jiaxin, SHAO Fei, BAI Linyue, XU Qian, SUN Bin, WANG Jingtao. Research on the interface of composite plate via explosive welding TC1/1060/6061 based on experiments and numerical simulations[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 81-87. DOI: 10.12073/j.hjxb.20221020002
Citation: YUAN Jiaxin, SHAO Fei, BAI Linyue, XU Qian, SUN Bin, WANG Jingtao. Research on the interface of composite plate via explosive welding TC1/1060/6061 based on experiments and numerical simulations[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 81-87. DOI: 10.12073/j.hjxb.20221020002

Research on the interface of composite plate via explosive welding TC1/1060/6061 based on experiments and numerical simulations

More Information
  • Received Date: October 19, 2022
  • Available Online: June 27, 2023
  • Titanium/aluminum composite plate with excellent performance can be obtained by combining thin layer titanium alloy plate with aluminum alloy plate, which has broad application prospects. TC1/1060/6061 composite plate was successfully prepared by explosive welding technology. The interface morphology and interface elements of the two interfaces were tested, and the advantages of 1060 interlayer were analyzed. At the same time, the finite element model consistent with the test conditions was established, and the interface state and welding process were analyzed. Finally, tensile test and shear test were carried out to verify the bonding quality of interface. The results show that the TC1/1060 interface has a linear morphology, and the 1060/6061 interface has a large wavy interface, and each wave is accompanied by the vortex region. The element diffusion range at the TC1/1060 interface is 4.38 μm, and no Ti/Al intermetallic compounds are detected. The numerical simulation reproduces the jetting formation in the process of explosive welding. The interface temperature is distributed along the interface morphology, and the interface pressure reaches the maximum at the collision point, showing an elliptic distribution. The composite plate has high tensile strength and shear strength, which can meet the requirements of structure use.
  • Paul H, Chulist R, Litynska-Dobrzynska L, et al. Interfacial reactions and microstructure related properties of explosively welded tantalum and steel sheets with copper interlayer[J]. Materials & Design, 2021, 208: 109873. doi: 10.1016/j.matdes.2021.109873
    韩建超, 刘畅, 贾燚, 等. 钛/铝复合板研究进展[J]. 中国有色金属学报, 2020, 30(6): 1270 − 1280.

    Han Jianchao, Liu Chang, Jia Yi, et al. Research progress on titanium/aluminum composite plate[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(6): 1270 − 1280.
    田晓东, 王小苗, 丁旭, 等. 钛/铝复合板爆炸焊接技术研究进展[J]. 钛工业进展, 2020, 37(6): 34 − 40.

    Tian Xiaodong, Wang Xiaomiao, Ding Xu, et al. Research progress of explosive welding technology for Ti/Al clad plates[J]. Titanium Industry Progress, 2020, 37(6): 34 − 40.
    田启超, 马宏昊, 沈兆武, 等. Al0.1CoCrFeNi高熵合金/TA2钛复合板爆炸焊接试验及性能测试[J]. 焊接学报, 2021, 42(6): 22 − 29.

    Tian Qichao, Ma Honghao, Shen Zhaowu, et al. Explosive welding and performance test of Al0.1CoCrFeNi high-entropy alloy/TA2 composite plate[J]. Transactions of the China Welding Institution, 2021, 42(6): 22 − 29.
    缪广红, 艾九英, 胡昱, 等. 爆炸焊接参数对钽/304不锈钢界面波形影响的数值模拟[J]. 焊接, 2022(11): 9 − 13.

    Miao Guanghong, Ai Jiuying, Hu Yu, et al. Numerical simulation of influence of explosive welding parameters on interface waveform of tantalum/304 stainless steel[J]. Welding & Joining, 2022(11): 9 − 13.
    Sedighi M, Honarpisheh M. Experimental study of through-depth residual stress in explosive welded Al–Cu–Al multilayer[J]. Materials & Design, 2012, 37: 577 − 581. doi: 10.1016/j.matdes.2011.10.022
    Jiang S N, Shen J J, Nagasaka T, et al. Interfacial characterization of dissimilar-metals bonding between vanadium alloy and Hastelloy X alloy by explosive welding[J]. Journal of Nuclear Materials, 2020, 539: 152322. doi: 10.1016/j.jnucmat.2020.152322
    Mahmood Y, Dai K D, Chen P W, et al. Experimental and numerical study on microstructure and mechanical properties of Ti-6Al-4V/Al-1060 explosive welding[J]. Metals, 2019, 9(11): 1189. doi: 10.3390/met9111189
    Wu X M, Shi C G, Fang Z H, et al. Comparative study on welding energy and interface characteristics of titanium-aluminum explosive composites with and without interlayer[J]. Materials & Design, 2021, 197: 109279. doi: 10.1016/j.matdes.2020.109279
    Fang Z H, Shi C G, Sun Z R, et al. Influence of interlayer technique on microstructure and mechanical properties of Ti/Al cladding plate manufactured via explosive welding[J]. Materials Research Express, 2019, 6(10): 1065f9. doi: 10.1088/2053-1591/ab42ac
    Li X J, Mo F, Wang X H, et al. Numerical study on mechanism of explosive welding[J]. Science and Technology of Welding and Joining, 2012, 17(1): 36 − 41. doi: 10.1179/1362171811Y.0000000071
    Liu M B, Zhang Z L, Feng D L. A density-adaptive SPH method with kernel gradient correction for modeling explosive welding[J]. Computational Mechanics, 2017, 60(3): 513 − 529. doi: 10.1007/s00466-017-1420-5
    Yang M, Xu J F, Chen D G, et al. Understanding interface evolution during explosive welding of silver foil and Q235 substrate through experimental observation coupled with simulation[J]. Applied Surface Science, 2021, 566: 150703. doi: 10.1016/j.apsusc.2021.150703
    Yang M, Xu J F, Ma H H, et al. Microstructure development during explosive welding of metal foil: morphologies, mechanical behaviors and mechanisms[J]. Composites Part B, 2021, 212: 108685. doi: 10.1016/j.compositesb.2021.108685
    缪广红, 艾九英, 胡昱, 等. 基于SPH法的爆炸焊接边界效应二维数值模拟[J]. 焊接学报, 2021, 42(9): 61 − 66. doi: 10.12073/j.hjxb.20210203002

    Miao Guanghong, Ai Jiuying, Hu Yu, et al. Two-dimensional numerical simulation of boundary effect of explosive welding based on SPH method[J]. Transactions of the China Welding Institution, 2021, 42(9): 61 − 66. doi: 10.12073/j.hjxb.20210203002
    Sun Z R, Shi C G, Shi H, et al. Comparative study of energy distribution and interface morphology in parallel and double vertical explosive welding by numerical simulations and experiments[J]. Materials & Design, 2020, 195: 109027. doi: 10.1016/j.matdes.2020.109027
    王耀华. 金属板材爆炸焊接研究与实践[M]. 北京: 国防工业出版社, 2007.

    Wang Yaohua. Research and practice of explosive welding of metal plates[M]. Beijing: National Defense Industry Press, 2007.
    Fang Z H, Shi C G, Shi H S, et al. Influence of explosive ratio on morphological and structural properties of Ti/Al clads[J]. Metals, 2019, 9(2): 119. doi: 10.3390/met9020119
    Mousavi Akbari A A, Al-Hassani S T S. Numerical and experimental studies of the mechanism of the wavy interface formations in explosive/impact welding[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(11): 2501 − 2528. doi: 10.1016/j.jmps.2005.06.001
  • Related Articles

    [1]WANG Huaishen, CHEN Lei, ZHANG Hongxia, CHAI Fei, YAN Xiaoying, DONG Peng. Microstructure and corrosion behavior of selective laser melting Ti-6Al-4V alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240106001
    [2]GE Yaqiong, SONG Yue, CHANG Zexin, HOU Qingling, XU Haijun, QIAO Jianfu, HOU Min. Forming Quality and Microstructure of Al0.5CoCrFeNi Bulk High-Entropy Alloy Fabricated by Selective Laser Melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20231128003
    [3]WANG Qun, QU Yuntao, ZHANG Biao, ZHANG Yuxian, LI Rui, LI Ning, YAN Jiazhen. Bending fatigue behavior of biomedical Ti-6Al-4V alloy prepared by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 57-64. DOI: 10.12073/j.hjxb.20230421001
    [4]ZHU Jie, ZHOU Qingjun, CHEN Xiaohui, FENG Kai, LI Zhuguo. Influence of layer thickness on the microstructure and mechanical properties of selective laser melting processed GH3625[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 12-17. DOI: 10.12073/j.hjxb.20230306002
    [5]CHEN Yanxing, LIU Xiuguo, ZHAO Yangyang, GONG Baoming, WANG Ying, LI Chengning. Microstructure and dynamic fracture behaviors of 17-4PH stainless steel fabricated by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 1-9. DOI: 10.12073/j.hjxb.20220306001
    [6]BA Peipei, DONG Zhihong, ZHANG Wei, PENG Xiao. Microstructure and mechanical properties of 12CrNi2 alloy steel manufactured by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 8-17. DOI: 10.12073/j.hjxb.20210323003
    [7]ZHANG Yu, JIANG Yun, HU Xiaoan. Microstructure and high temperature creep properties of Inconel 625 alloy by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 78-84. DOI: 10.12073/j.hjxb.20191211001
    [8]YANG Tianyu, ZHANG Penglin, YIN Yan, LIU Wenzhao, ZHANG Ruihua. Microstructure based on selective laser melting and mechanical properties prediction through artificial neural net[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 100-106. DOI: 10.12073/j.hjxb.2019400162
    [9]YIN Yan<sup>1</sup>, LIU Pengyu<sup>1</sup>, LU Chao<sup>2</sup>, XIAO Mengzhi<sup>1,3</sup>, ZHANG Ruihua<sup>2,3</sup>. Microstructure and tensile properties of selective laser melting forming 316L stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 77-81. DOI: 10.12073/j.hjxb.2018390205
    [10]CAO Jian, FENG Ji-cai, LI Zhuo-ran. Selection of interlayer for field-assisted self-propagated high temperature joining of TiAl alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 1-4.

Catalog

    Article views (206) PDF downloads (72) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return