Advanced Search
YUAN Jiaxin, SHAO Fei, BAI Linyue, XU Qian, SUN Bin, WANG Jingtao. Research on the interface of composite plate via explosive welding TC1/1060/6061 based on experiments and numerical simulations[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 81-87. DOI: 10.12073/j.hjxb.20221020002
Citation: YUAN Jiaxin, SHAO Fei, BAI Linyue, XU Qian, SUN Bin, WANG Jingtao. Research on the interface of composite plate via explosive welding TC1/1060/6061 based on experiments and numerical simulations[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 81-87. DOI: 10.12073/j.hjxb.20221020002

Research on the interface of composite plate via explosive welding TC1/1060/6061 based on experiments and numerical simulations

More Information
  • Received Date: October 19, 2022
  • Available Online: June 27, 2023
  • Titanium/aluminum composite plate with excellent performance can be obtained by combining thin layer titanium alloy plate with aluminum alloy plate, which has broad application prospects. TC1/1060/6061 composite plate was successfully prepared by explosive welding technology. The interface morphology and interface elements of the two interfaces were tested, and the advantages of 1060 interlayer were analyzed. At the same time, the finite element model consistent with the test conditions was established, and the interface state and welding process were analyzed. Finally, tensile test and shear test were carried out to verify the bonding quality of interface. The results show that the TC1/1060 interface has a linear morphology, and the 1060/6061 interface has a large wavy interface, and each wave is accompanied by the vortex region. The element diffusion range at the TC1/1060 interface is 4.38 μm, and no Ti/Al intermetallic compounds are detected. The numerical simulation reproduces the jetting formation in the process of explosive welding. The interface temperature is distributed along the interface morphology, and the interface pressure reaches the maximum at the collision point, showing an elliptic distribution. The composite plate has high tensile strength and shear strength, which can meet the requirements of structure use.
  • Paul H, Chulist R, Litynska-Dobrzynska L, et al. Interfacial reactions and microstructure related properties of explosively welded tantalum and steel sheets with copper interlayer[J]. Materials & Design, 2021, 208: 109873. doi: 10.1016/j.matdes.2021.109873
    韩建超, 刘畅, 贾燚, 等. 钛/铝复合板研究进展[J]. 中国有色金属学报, 2020, 30(6): 1270 − 1280.

    Han Jianchao, Liu Chang, Jia Yi, et al. Research progress on titanium/aluminum composite plate[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(6): 1270 − 1280.
    田晓东, 王小苗, 丁旭, 等. 钛/铝复合板爆炸焊接技术研究进展[J]. 钛工业进展, 2020, 37(6): 34 − 40.

    Tian Xiaodong, Wang Xiaomiao, Ding Xu, et al. Research progress of explosive welding technology for Ti/Al clad plates[J]. Titanium Industry Progress, 2020, 37(6): 34 − 40.
    田启超, 马宏昊, 沈兆武, 等. Al0.1CoCrFeNi高熵合金/TA2钛复合板爆炸焊接试验及性能测试[J]. 焊接学报, 2021, 42(6): 22 − 29.

    Tian Qichao, Ma Honghao, Shen Zhaowu, et al. Explosive welding and performance test of Al0.1CoCrFeNi high-entropy alloy/TA2 composite plate[J]. Transactions of the China Welding Institution, 2021, 42(6): 22 − 29.
    缪广红, 艾九英, 胡昱, 等. 爆炸焊接参数对钽/304不锈钢界面波形影响的数值模拟[J]. 焊接, 2022(11): 9 − 13.

    Miao Guanghong, Ai Jiuying, Hu Yu, et al. Numerical simulation of influence of explosive welding parameters on interface waveform of tantalum/304 stainless steel[J]. Welding & Joining, 2022(11): 9 − 13.
    Sedighi M, Honarpisheh M. Experimental study of through-depth residual stress in explosive welded Al–Cu–Al multilayer[J]. Materials & Design, 2012, 37: 577 − 581. doi: 10.1016/j.matdes.2011.10.022
    Jiang S N, Shen J J, Nagasaka T, et al. Interfacial characterization of dissimilar-metals bonding between vanadium alloy and Hastelloy X alloy by explosive welding[J]. Journal of Nuclear Materials, 2020, 539: 152322. doi: 10.1016/j.jnucmat.2020.152322
    Mahmood Y, Dai K D, Chen P W, et al. Experimental and numerical study on microstructure and mechanical properties of Ti-6Al-4V/Al-1060 explosive welding[J]. Metals, 2019, 9(11): 1189. doi: 10.3390/met9111189
    Wu X M, Shi C G, Fang Z H, et al. Comparative study on welding energy and interface characteristics of titanium-aluminum explosive composites with and without interlayer[J]. Materials & Design, 2021, 197: 109279. doi: 10.1016/j.matdes.2020.109279
    Fang Z H, Shi C G, Sun Z R, et al. Influence of interlayer technique on microstructure and mechanical properties of Ti/Al cladding plate manufactured via explosive welding[J]. Materials Research Express, 2019, 6(10): 1065f9. doi: 10.1088/2053-1591/ab42ac
    Li X J, Mo F, Wang X H, et al. Numerical study on mechanism of explosive welding[J]. Science and Technology of Welding and Joining, 2012, 17(1): 36 − 41. doi: 10.1179/1362171811Y.0000000071
    Liu M B, Zhang Z L, Feng D L. A density-adaptive SPH method with kernel gradient correction for modeling explosive welding[J]. Computational Mechanics, 2017, 60(3): 513 − 529. doi: 10.1007/s00466-017-1420-5
    Yang M, Xu J F, Chen D G, et al. Understanding interface evolution during explosive welding of silver foil and Q235 substrate through experimental observation coupled with simulation[J]. Applied Surface Science, 2021, 566: 150703. doi: 10.1016/j.apsusc.2021.150703
    Yang M, Xu J F, Ma H H, et al. Microstructure development during explosive welding of metal foil: morphologies, mechanical behaviors and mechanisms[J]. Composites Part B, 2021, 212: 108685. doi: 10.1016/j.compositesb.2021.108685
    缪广红, 艾九英, 胡昱, 等. 基于SPH法的爆炸焊接边界效应二维数值模拟[J]. 焊接学报, 2021, 42(9): 61 − 66. doi: 10.12073/j.hjxb.20210203002

    Miao Guanghong, Ai Jiuying, Hu Yu, et al. Two-dimensional numerical simulation of boundary effect of explosive welding based on SPH method[J]. Transactions of the China Welding Institution, 2021, 42(9): 61 − 66. doi: 10.12073/j.hjxb.20210203002
    Sun Z R, Shi C G, Shi H, et al. Comparative study of energy distribution and interface morphology in parallel and double vertical explosive welding by numerical simulations and experiments[J]. Materials & Design, 2020, 195: 109027. doi: 10.1016/j.matdes.2020.109027
    王耀华. 金属板材爆炸焊接研究与实践[M]. 北京: 国防工业出版社, 2007.

    Wang Yaohua. Research and practice of explosive welding of metal plates[M]. Beijing: National Defense Industry Press, 2007.
    Fang Z H, Shi C G, Shi H S, et al. Influence of explosive ratio on morphological and structural properties of Ti/Al clads[J]. Metals, 2019, 9(2): 119. doi: 10.3390/met9020119
    Mousavi Akbari A A, Al-Hassani S T S. Numerical and experimental studies of the mechanism of the wavy interface formations in explosive/impact welding[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(11): 2501 − 2528. doi: 10.1016/j.jmps.2005.06.001
  • Related Articles

    [1]WANG Xiaowei, YANG Dongqing, LI Xiaopeng, WANG Lei, WANG Kehong. Microstructure and mechanical properties of AZ31Mg/2A12Al laminated composites interface fabricated by explosive welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(5): 14-17. DOI: 10.12073/j.hjxb.20201009001
    [2]ZHOU Guoan, MA Honghao, SHEN Zhaowu, YANG Ming, CHEN Peiyuan. Influence of normalizing on microstructure and mechanical properties of Cu/Al explosive welded plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 46-51. DOI: 10.12073/j.hjxb.2019400153
    [3]ZHANG Tingting1,2, WANG Wenxian1,2, WEI Yi1,2, CAO Xiaoqing1,2. Wavy interface and mechanical properties of explosive welded Ti/Al/Mg cladded plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(8): 33-36. DOI: 10.12073/j.hjxb.20151021001
    [4]DENG Wei, LU Ming, XU Qian. Effect of detonation velocity on interface and properties of Al/Ti composite tube under explosive welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 39-42.
    [5]XUE Zhiqing, HU Shengsun, ZUO Di, SHEN Junqi. Microstructural characteristics and mechanical properties of laser-welded copper and aluminum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (10): 51-54.
    [6]WU Wei, CHENG Guangfu, GAO Hongming, WU Lin. Microstructure transformation and mechanical properties of TC4 alloy joints welded by TIG[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (7): 81-84.
    [7]ZHANG Liang, XUE Songbai, HAN Zongjie, YU Shenglin, SHENG Zhong. Investigation of mechanical property and fracture morphology of lead-free soldered joints of fine pitch devices[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (9): 35-38.
    [8]YANG Yang, CHEN Zhongping, LI Dahe, LIU Xiaohui. Microstructure and mechanical properties of Monel alloy copper explosive clad interface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (8): 53-56.
    [9]SONG Jianling, LIN Sanbao, YANG Chunli, FAN Chenglei. Microstructure and mechanical properties of TIG brazing of stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (4): 105-108.
    [10]ZHANG Yanfei, DONG Junhui, ZHANG Yongzhi. Prediction mechanical properties of welded joints based on ANFIS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (9): 5-8.
  • Cited by

    Periodical cited type(4)

    1. 李岩,杨德智,王贵成,李聚才,刘翠荣. 管件磁脉冲焊接集磁器结构仿真优化. 焊接学报. 2025(01): 103-111 . 本站查看
    2. 冯玉兰,吴志生,孙智宇. 覆材厚度对不锈钢复合板焊接接头应力应变影响的数值模拟分析. 焊接学报. 2024(01): 73-82+133-134 . 本站查看
    3. 缪广红,陈龙,周大鹏,刘自伟,朱志强,张旭,楚翔宇. 铝过渡层对钛/铝爆炸焊接影响的数值模拟. 精密成形工程. 2024(08): 85-90 .
    4. 魏正梅,缪广红,董继蕾,孙伟波,周大鹏. 爆炸焊接基复板间距上限法则的数值模拟研究. 金陵科技学院学报. 2024(03): 77-84 .

    Other cited types(2)

Catalog

    Article views (217) PDF downloads (72) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return