Advanced Search
TIAN Qichao, MA Honghao, SHEN Zhaowu, CHEN Zijun, ZHAO Kai, Zhao Yang. Explosive welding and performance test of Al0.1CoCrFeNi high-entropy alloy/TA2 composite plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(6): 22-29. DOI: 10.12073/j.hjxb.20200506002
Citation: TIAN Qichao, MA Honghao, SHEN Zhaowu, CHEN Zijun, ZHAO Kai, Zhao Yang. Explosive welding and performance test of Al0.1CoCrFeNi high-entropy alloy/TA2 composite plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(6): 22-29. DOI: 10.12073/j.hjxb.20200506002

Explosive welding and performance test of Al0.1CoCrFeNi high-entropy alloy/TA2 composite plate

More Information
  • Received Date: May 05, 2020
  • Available Online: November 16, 2020
  • High-entropy alloy (HEA) is an emerging material which possesses great potential as a structure material, but there are relatively few studies devoted to HEA joining technology. The TA2 commercial pure titanium plate and Al0.1CoCrFeNi HEA are joined by explosive welding technology. The microstructure analysis and mechanical tests of Al0.1CoCrFeNi/TA2 composite plate are conducted. These results show that the Al0.1CoCrFeNi/TA2 composite plate possesses a wavy bonding interface with a discontinuous melted zone. Moreover, the melted zone presents a multi-element mixed state, and a relatively uniform element distribution occurs in the melted zone. The hardness of the melting zone is greater than that of TA2 side and Al0.1CoCrFeNi HEA side. And it gradually decreases with the increase of the distance from the interface. However, the hardness of the composite plate is still higher than that of the parent materials. Compared with the strength of the Al0.1CoCrFeNi HEA plate (398 MPa), the strength of the Al0.1CoCrFeNi/TA2 composite plate after explosive welding is significantly increased (567 MPa). On the contrary, elongation is reduced after explosive welding. The results tests show that explosive welding is an effective method for joining TA2 commercial pure titanium with Al0.1CoCrFeNi high-entropy alloy, and the welded composite plate shows great mechanical performance.
  • Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299 − 303. doi: 10.1002/adem.200300567
    Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off[J]. Nature, 2016, 534(7606): 227 − 230. doi: 10.1038/nature17981
    Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts[J]. Acta Materialia, 2017, 122: 448 − 511. doi: 10.1016/j.actamat.2016.08.081
    Shi Y, Yang B, Xie X, et al. Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior[J]. Corrosion Science, 2017, 119: 33 − 45. doi: 10.1016/j.corsci.2017.02.019
    Chuang M H, Tsai M H, Wang W R, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys[J]. Acta Materialia, 2011, 59(16): 6308 − 6317. doi: 10.1016/j.actamat.2011.06.041
    Garlapati M M, Vaidya M, Karati A, et al. Influence of Al content on thermal stability of nanocrystalline AlxCoCrFeNi high entropy alloys at low and intermediate temperatures[J]. Advanced Powder Technology, 2020, 31(5): 1985 − 1993.
    Wang R, Zhang K, Davies C, et al. Evolution of microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy prepared by direct laser fabrication[J]. Journal of Alloys and Compounds, 2017, 694: 971 − 981. doi: 10.1016/j.jallcom.2016.10.138
    Liu X, Cheng H, Li Z, et al. Microstructure and mechanical properties of FeCoCrNiMnTi0.1C0.1 high-entropy alloy produced by mechanical alloying and vacuum hot pressing sintering[J]. Vacuum, 2019, 165: 297 − 304. doi: 10.1016/j.vacuum.2019.04.043
    Gangireddy S, Gwalani B, Soni V, et al. Contrasting mechanical behavior in precipitation hardenable AlxCoCrFeNi high entropy alloy microstructures: single phase FCC vs. dual phase FCC-BCC[J]. Materials Science and Engineering: A, 2019, 739: 158 − 166. doi: 10.1016/j.msea.2018.10.021
    Wang T, Shukla S, Komarasamy M, et al. Towards heterogeneous AlxCoCrFeNi high entropy alloy via friction stir processing[J]. Materials Letters, 2019, 236: 472 − 475. doi: 10.1016/j.matlet.2018.10.161
    Sokkalingam R, Mishra S, Cheethirala S R, et al. Enhanced relative slip distance in gas-tungsten-arc-welded Al0.5CoCrFeNi high-entropy alloy[J]. Metallurgical And Materials Transactions A, 2017, 48A(8): 3630 − 3634.
    Wu Z, David S A, Feng Z, et al. Weldability of a high entropy CrMnFeCoNi alloy[J]. Scripta Materialia, 2016, 124: 81 − 85. doi: 10.1016/j.scriptamat.2016.06.046
    Kashaev N, Ventzke V, Stepanov N, et al. Laser beam welding of a CoCrFeNiMn-type high entropy alloy produced by self-propagating high-temperature synthesis[J]. Intermetallics, 2018, 96: 63 − 71. doi: 10.1016/j.intermet.2018.02.014
    Zhu Z G, Sun Y F, Goh M H, et al. Friction stir welding of a CoCrFeNiAl0.3 high entropy alloy[J]. Materials Letters, 2017, 205: 142 − 144. doi: 10.1016/j.matlet.2017.06.073
    Yang Y C, Liu C, Lin C Y, et al. Core effect of local atomic configuration and design principles in AlxCoCrFeNi high-entropy alloys[J]. Scripta Materialia, 2020, 178: 181 − 186. doi: 10.1016/j.scriptamat.2019.11.016
    Zhang T, Wang W, Zhang W, et al. Microstructure evolution and mechanical properties of an AA6061/AZ31B alloy plate fabricated by explosive welding[J]. Journal of Alloys and Compounds, 2018, 735: 1759 − 1768. doi: 10.1016/j.jallcom.2017.11.285
    周国安, 马宏昊, 沈兆武, 等. 正火处理对Cu/Al爆炸焊接板显微结构及力学性能的影响[J]. 焊接学报, 2019, 40(6): 46 − 51. doi: 10.12073/j.hjxb.2019400153

    Zhou Guoan, Ma Honghao, Shen Zhaowu, et al. Influence of normalizing on microstructure and mechanical properties of Cu/Al explosive welded plate[J]. Transactions of the China Welding Institution, 2019, 40(6): 46 − 51. doi: 10.12073/j.hjxb.2019400153
    房中行, 史长根, 冯柯, 等. TA2-1060-TA2复合板爆炸焊接试验及性能测试[J]. 焊接学报, 2019, 40(9): 87 − 92.

    Fang Zhonghang, Shi Changgen, Feng Ke, et al. Explosive welding experiment and property test of TA2-1060-TA2 cladding plate[J]. Transactions of the China Welding Institution, 2019, 40(9): 87 − 92.
    Ning J, Zhang L J, Xie M X, et al. Microstructure and property inhomogeneity investigations of bonded Zr/Ti/steel trimetallic sheet fabricated by explosive welding[J]. Journal of Alloys and Compounds, 2017, 698: 835 − 851. doi: 10.1016/j.jallcom.2016.12.213
    Zhang H, Jiao K X, Zhang J L, et al. Experimental and numerical investigations of interface characteristics of copper/steel composite prepared by explosive welding[J]. Materials & Design, 2018, 154: 140 − 152.
    陈洪胜, 王文先, 陈伟, 等. 镁/铝层合板FSW接头微观组织及力学性能[J]. 焊接学报, 2020, 41(3): 38 − 44.

    Chen H S, Wang W X, Chen W, et al. Microstructure and mechanical properties of FSW joint of Mg/Al clad sheets[J]. Transactions of the China Welding Institution,, 2020, 41(3): 38 − 44.
    Findik F. Recent developments in explosive welding[J]. Materials & Design, 2011, 32(3): 1081 − 1093.
    Bataev I, Ogneva T, Bataev A, et al. Explosively welded multilayer Ni–Al composites[J]. Materials & Design, 2015, 88: 1082 − 1087.
    Xu X D, Liu P, Tang Z, et al. Transmission electron microscopy characterization of dislocation structure in a face-centered cubic high-entropy alloy Al0.1CoCrFeNi[J]. Acta Materialia, 2018, 144: 107 − 115. doi: 10.1016/j.actamat.2017.10.050
    Komarasamy M, Alagarsamy K, Mishra R S. Serration behavior and negative strain rate sensitivity of Al0.1CoCrFeNi high entropy alloy[J]. Intermetallics, 2017, 84: 20 − 24. doi: 10.1016/j.intermet.2016.12.016
    Sharma A, Balasubramanian G. Dislocation dynamics in Al0.1CoCrFeNi high-entropy alloy under tensile loading[J]. Intermetallics, 2017, 91: 31 − 34. doi: 10.1016/j.intermet.2017.08.004
    Li X, Ma H, Shen Z. Research on explosive welding of aluminum alloy to steel with dovetail grooves[J]. Materials & Design, 2015, 87: 815 − 824.
    Athar M H, Tolaminejad B. Weldability window and the effect of interface morphology on the properties of Al/Cu/Al laminated composites fabricated by explosive welding[J]. Materials & Design, 2015, 86: 516 − 525.
    Sun W, Guo J, Zhang W, et al. Microstructure and strengthening mechanism of Ti/Cu laminated composite produced by underwater explosive welding[J]. Journal of Materials Engineering And Performance, 2020, 29(8): 5069 − 5079. doi: 10.1007/s11665-020-05044-w
    Xia H B, Wang S G, Ben H F. Microstructure and mechanical properties of Ti/Al explosive cladding[J]. Materials & Design, 2014, 56: 1014 − 1019.
    Chu Q, Zhang M, Li J, et al. Experimental and numerical investigation of microstructure and mechanical behavior of titanium/steel interfaces prepared by explosive welding[J]. Materials Science and Engineering: A, 2017, 689: 323 − 331. doi: 10.1016/j.msea.2017.02.075
    Wang W R, Wang W L, Wang S C, et al. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys[J]. Intermetallics, 2012, 26: 44 − 51. doi: 10.1016/j.intermet.2012.03.005
    Zhao Y, Wang M, Cui H, et al. Effects of Ti-to-Al ratios on the phases, microstructures, mechanical properties, and corrosion resistance of Al2-xCoCrFeNiTix high-entropy alloys[J]. Journal of Alloys and Compounds, 2019, 805: 585 − 596. doi: 10.1016/j.jallcom.2019.07.100
    Zhang T, Wang W, Zhou J, et al. Interfacial characteristics and nano-mechanical properties of dissimilar 304 austenitic stainless steel/AZ31B Mg alloy welding joint[J]. Journal of Manufacturing Processes, 2019, 42: 257 − 265. doi: 10.1016/j.jmapro.2019.04.031
    Wang C, Tracy CL, Park S, et al. Phase transformations of Al-bearing high-entropy alloys AlxCoCrFeNi (x = 0, 0.1, 0.3, 0.75, 1.5) at high pressure[J]. Applied Physics Letters, 2019, 114(9): 091902. doi: 10.1063/1.5079868
    Zhang M, Zhang T, Cai J Q, et al. Effect of heat treatment on microstucture and properties of explosive welding clad plate of TA1/Q345[J]. China Welding, 2018, 27(1): 26 − 31.
    Hoseini-Athar M M, Tolaminejad B. Interface morphology and mechanical properties of Al-Cu-Al laminated composites fabricated by explosive welding and subsequent rolling process[J]. Metals and Materials International, 2016, 22(4): 670 − 680. doi: 10.1007/s12540-016-5687-4
    Shi C G, Sun Z R, Fang Z H, et al. Design and test of a protective structure for the double vertical explosive welding of large titanium/steel plate[J]. China Welding, 2019, 28(3): 7 − 14.
  • Related Articles

    [1]JIANG Fan, FANG Shitong, ZHANG Guokai, CHEN Shujun, LI Tianming, XU Bin. Front-side monitoring technology for back-side keyhole state in VPPAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 8-14. DOI: 10.12073/j.hjxb.20231107002
    [2]XIN Jianwen, WU Dongsheng, LI Fang, ZHANG Yuelong, WUANG Huan, HUA Xueming. Formation mechanism of elongated cavities in keyhole plasma arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 54-61. DOI: 10.12073/j.hjxb.20210414003
    [3]DENG Lipeng, KE Liming, LIU Jinhe. Essence of the technology of filling keyhole based on resistance welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 50-53. DOI: 10.12073/j.hjxb.20190708005
    [4]HAN Xiaohui, MA Yin, MA Guolong, YANG Haifeng, XU Liang. Dynamic characteristic analysis of keyhole in double beam laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(2): 93-96. DOI: 10.12073/j.hzxb.20190811002
    [5]WANG Hongyu, DING Rui, HUANG Aiguo, KAN Peng. Analysis on keyhole phase change and flow field of back reflection induced synergistic laser weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 125-128. DOI: 10.12073/j.hjxb.2018390137
    [6]LI Bin, ZHAO Zeyang, WANG Chunming, HU Xiyuan, GUO Lian. Behaviors of plasma and keyhole in laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(2): 87-91.
    [7]CHEN Weidong, PANG Shengyong, LIAO Dunming, ZHOU Jianxin. Numerical simulation of transient keyhole instability and weld pool behaviors in parallel dual-beam laser welding Part I. Model development and transient keyhole behaviors[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (3): 5-9.
    [8]LUO Yi, DU Changhua, XU Huibin, YANG Shike. An analytical model of heat transfer by evaporation on front keyhole wall in vacuum electron beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (6): 65-68.
    [9]WANG Renping, LEI Yongping, SHI Yaowu. Numerical simulation of keyhole formation process in laser deep penetration welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (11): 38-40.
    [10]ZHOU Qi, LIU Fang-jun. The Review on the Keyhole Dynamics of the Electron Beam Deep Penetration Welding Process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (3): 88-92.
  • Cited by

    Periodical cited type(8)

    1. 陈家琪,孙宝福,宁薇,冯美荣. 加速电压对电子束熔丝沉积304不锈钢组织与静力学性能的影响. 机械强度. 2024(04): 859-866 .
    2. 武千业,吴玉娟,邓庆琛,常治宇,丁晨阳,梁耀元,金于皓,韩啸,李玺玉,贺博文,刘子翼,彭立明. 镁合金及其镁基材料增材制造技术研究现状与展望. 有色金属工程. 2024(12): 63-82 .
    3. 李晨阳,许燕,周建平,李静. 焊接工艺参数对仰焊MAG堆焊成形的影响. 焊接. 2023(03): 32-38 .
    4. 吴诚福,李新意,陈洪胜,李健,聂慧慧,王文先. 激光增材制造WC_p钛基复合材料界面连接机理及力学性能. 焊接学报. 2023(03): 44-53+131-132 . 本站查看
    5. 吴诚福,李新意,陈洪胜,李健,聂慧慧,王文先. 激光增材制造WC_p钛基复合材料界面连接机理及力学性能. 机械制造文摘(焊接分册). 2023(06): 27-35 .
    6. 庄明祥,赵安安,王浩军,李善良,龙健,张林杰. TC4钛合金电子束焊接头低周疲劳性能与断裂行为. 焊接. 2022(02): 39-45+55 .
    7. 桑兴华,许海鹰,杨波,王壮,彭勇. 环形束斑冷阴极电子枪的研制及其束流品质优化. 电焊机. 2021(08): 153-159+182 .
    8. 刘捷,谢美蓉,王梦飞,刘天亮,王克鸿. 激光振荡扫描焊接Ti_2AlNb/TC4焊缝组织及力学性能. 焊接. 2021(11): 21-26+62 .

    Other cited types(6)

Catalog

    Article views (446) PDF downloads (28) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return