Advanced Search
WANG Bin, LI Sheng, ZHU Fuhui, LI Xifeng. Evaluation on interfacial defect size of diffusion bonding based on ultrasonic non-destructive testing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(8): 34-38. DOI: 10.12073/j.hjxb.20200323004
Citation: WANG Bin, LI Sheng, ZHU Fuhui, LI Xifeng. Evaluation on interfacial defect size of diffusion bonding based on ultrasonic non-destructive testing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(8): 34-38. DOI: 10.12073/j.hjxb.20200323004

Evaluation on interfacial defect size of diffusion bonding based on ultrasonic non-destructive testing

More Information
  • Received Date: March 22, 2020
  • Available Online: October 20, 2020
  • Aiming at the non-destructive testing problems of interfacial defects of diffusion bonding, the water immersion ultrasonic testing was performed on the prepared specimen with artificial defects. An ultrasonic response model of interfacial defects of diffusion bonding was proposed. A measurement method was developed to evaluate the interfacial defect thickness by ultrasonic testing. The specimen with artificial defects was firstly prepared by the diffusion bonding process. It was later subjected to the water immersion ultrasonic testing through an incident wave frequency of 30 MHz. Based on the principle of ultrasonic non-destructive testing, an ultrasonic response model for unbonded defects was proposed. The interfacial stiffness coefficient (K) was introduced as a bridge to establish the relationship between the ultrasonic reflectivity and the interfacial defect size. At the specific measurement position, constants of the ultrasonic response model were determined by fitting the ultrasonic reflected wave data and actual micro defect size. Therefore, the interfacial defect thickness can be evaluated by the proposed model based on ultrasonic non-destructive testing. The results show that tradition ultrasonic C scanning usually determines qualitatively whether the defects exist or not. The proposed measurement method of interfacial defect thickness make a supplement for ultrasonic C scanning to some extent. It is helpful for measuring defect size quantitatively. The evaluation of defect risk level is achieved.
  • 张驰, 栾亦琳, 罗志伟, 等. 扩散焊接头缺陷超声C扫描检测能力分析[J]. 焊接学报, 2016, 37(9): 83 − 86.

    Zhang Chi, Luan Yilin, Luo Zhiwei, et al. Analysis of ultrasonic C-scan detectability on diffusion bonding joint[J]. Transactions of the China Welding Institution, 2016, 37(9): 83 − 86.
    Zhu Fuhui, Peng Heli, Li Xifeng, et al. Dissimilar diffusion bonding behavior of hydrogenated Ti2AlNb-based and Ti-6Al-4V alloys[J]. Materials and Design, 2018, 159(5): 68 − 78.
    Chen Sijie, Tang Hengjuan, Zhao Pifeng. A two-step transient liquid phase diffusion bonding process of T91 steels[J]. China Welding, 2017, 26(2): 52 − 57.
    蔡小强, 王颖, 杨振文, 等. Ti2AlNb合金瞬时液相扩散连接接头界面组织及性能分析[J]. 焊接学报, 2018, 39(2): 24 − 28.

    Cai Xiaoqiang, Wang Ying, Yang Zhenwen, et al. Interfacial microstructures and mechanical properties of transient liquid phase (TLP) bonding of Ti2AlNb alloy with Ti/Ni interlayer[J]. Transactions of the China Welding Institution, 2018, 39(2): 24 − 28.
    Tarraf J, Mustapha S, Fakih M A, et al. Application of ultrasonic waves towards the inspection of similar and dissimilar friction stir welded joints[J]. Journal of Materials Processing Technology, 2018, 255: 570 − 583. doi: 10.1016/j.jmatprotec.2018.01.006
    Liu Xinpei, Uy B, Mukherjee A. Transmission of ultrasonic guided wave for damage detection in welded steel plate structures[J]. Steel and Composite Structures, 2019, 33(3): 445 − 461.
    叶佳龙, 刚铁. 304不锈钢扩散焊界面的超声非线性成像[J]. 焊接学报, 2014, 35(5): 95 − 99.

    Ye Jialong, Gang Tie. Ultrasonic nonlinear imaging in diffusion bonding of 304 stainless steel[J]. Transactions of the China Welding Institution, 2014, 35(5): 95 − 99.
    Kumar S S, Ravisankar B. Destructive and non-destructive evaluation of copper diffusion bonds[J]. Journal of Manufacturing Processes, 2016, 23: 13 − 20. doi: 10.1016/j.jmapro.2016.05.012
    Santosh K A, Mohan T, Suresh K S, et al. Destructive and non-destructive evaluation of cu/cu diffusion bonding with interlayer aluminum[J]//IOP Conference Series: Materials Science and Engineering, India, 2018, 330(1): 012045.
    Debbouz O, Navai F. Nondestructive testing of 2017 aluminum copper alloy diffusion welded joints by an automatic ultrasonic system[J]. Materials Evaluation, 1999, 57(12): 1261 − 1267.
    刘永军. TC4钛合金与1Cr18Ni9Ti不锈钢超塑性扩散连接工艺研究[D]. 西安: 西北工业大学, 2007.

    Liu Yongjun. Research on superplastic diffusion bonding of TC4 titanium alloy to 1Cr18Ni9Ti stainless steel[D]. Xi’an: Northwestern Polytechnical University, 2007.
    Lavrentyev A I, Beals J T. Ultrasonic measurement of the diffusion bond strength[J]. Ultrasonics, 2000, 38(1): 513 − 516.
    Miline K, Cawley P, Nagy P B, et al. Ultrasonic non-destructive evaluation of titanium diffusion bonds[J]. Journal of Nondestructive Evaluation, 2011, 30(4): 225 − 236. doi: 10.1007/s10921-011-0111-y
    Xiong J T, Sun J R, Wang J C, et al. Evaluation of the bonded ratio of TC4 diffusion bonded joints based on ultrasonic C-scan[J]. Journal of Manufacturing Processes, 2019, 47: 238 − 243. doi: 10.1016/j.jmapro.2019.09.025
    Cai W, Daehn G, Vivek A, et al. A state-of-the-art review on solid-state metal joining[J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2019, 141(3): 031012. doi: 10.1115/1.4041182
    Rokhlin S, Wang Y. Analysis of boundary conditions for elastic wave interaction with an interface between two solids[J]. The Journal of the Acoustical Society of America, 1991, 89(2): 503 − 515. doi: 10.1121/1.400374
    Schmerr L W. Fundamentals of ultrasonic nondestructive evaluation[M]. Berlin: Springer, 2016.
  • Cited by

    Periodical cited type(8)

    1. 刘波,李玲,何春双,刘雪丽. 对开式扩散焊钛合金空心支板水浸超声C扫描检测方法研究. 航空精密制造技术. 2024(03): 6-9 .
    2. 迟大钊,徐智贤,刘海春,李庆生,郭强,苏维刚,贾涛. 基于改进SIFT算法的超声图像拼接方法. 焊接学报. 2024(10): 1-7 . 本站查看
    3. 刘祥,滕俊飞,吕彦龙,陈曦,邬冠华. 薄壁小直径柱/板扩散焊界面超声信号特征分析与缺陷智能识别. 失效分析与预防. 2024(05): 319-326 .
    4. 赖迎庆,张柏源,谢建红. 双合金焊接盘的水浸超声检测. 无损探伤. 2023(03): 38-41 .
    5. 袁晓斌,陈虹宇,胥胜洪,袁浩. 基于超声波的升船机船厢现场组拼焊缝无损检测方法. 焊接技术. 2023(07): 107-111 .
    6. 孔庆茹,陈尧,马啸啸,陈明. 含型腔扩散焊零件加强筋的相控阵超声检测. 失效分析与预防. 2023(06): 362-368+399 .
    7. 吕洪涛,李锋,刘志毅,王俊涛,张祥春,石亮,王池权,邵成伟. 基于超声C扫描数字图像处理的缺陷面积分析. 无损检测. 2022(12): 37-41+71 .
    8. 董瑞琴,王婵,陈明,马啸啸,陈尧. 窄腹板扩散焊相控阵超声检测工艺探究. 无损探伤. 2021(05): 9-13 .

    Other cited types(9)

Catalog

    Article views (509) PDF downloads (28) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return