Advanced Search
FANG Yuchao, YANG Ziyou, DING Rui, DONG Shulei, HE Jingshan. Molten pool dynamics of horizontal scanning EBW on thin niobium plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(2): 68-74. DOI: 10.12073/j.hjxb.20191122002
Citation: FANG Yuchao, YANG Ziyou, DING Rui, DONG Shulei, HE Jingshan. Molten pool dynamics of horizontal scanning EBW on thin niobium plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(2): 68-74. DOI: 10.12073/j.hjxb.20191122002

Molten pool dynamics of horizontal scanning EBW on thin niobium plate

More Information
  • Received Date: November 21, 2019
  • Available Online: July 12, 2020
  • During the EBW process, the driving force such as recoil pressure induced by evaporation, surface tension and gravity affect the fluid flow and thus influence the bead shape. In the situation of horizontal scanning welding, the scanning oscillation of the heating area of electron beam and the alteration of gravity make the fluid flow in the molten pool more complicated to describe. Experimental and computational methods are used to observe and investigate the shape of the molten pool and the fusion zone after solidification. The penetration depth, melting width and the fusion line profile are predicted accurately by the simulation results compared to the experiments. Analysis of the flow field of molten pool indicates the main driving force of fluid flow in half-penetration weld pool is the recoil pressure. By contrast, the Marangoni flow dominates the fluid flow on the top surface of the full-penetration weld pool, and the surface tension and recoil pressure have a combined action to the molten pool. Gravity and the scanning of electron beam cause the asymmetry of molten pool both in the mass distribution and flow field distribution, and thus the asymmetry of the fusion line profile.
  • Benin B, Materials for superconducting cavities[R]. DAPNIA-SEA-96-02, Gif-sur-Yvette, France: CEA Saclay, 1996
    温华明. 梯度射频超导腔及其功率耦合器材料的研究[D]. 北京:中国科学院研究生院, 2005.
    Kuchnir M, Hiller R E. Welding of niobium to stainless[J]. NASA STI/Recon Technical Report N, 1993, 94: 24614.
    张弘宇, 李中泉, 屈化民, 等. 薄铌板电子束焊接工艺研究[J]. 中国机械工程, 2015, 26(17): 2314 − 2317. doi: 10.3969/j.issn.1004-132X.2015.17.007

    Zhang Hongyu, Li Zhongquan, Qu Huamin, et al. Study on electron beam welding of thin niobium plates[J]. China Mechanical Engineering, 2015, 26(17): 2314 − 2317. doi: 10.3969/j.issn.1004-132X.2015.17.007
    刘成财, 刘铖丹, 刘巍巍, 等. 2219 铝合金电子束焊接匙孔演变过程的数值模拟[J]. 焊接学报, 2016, 37(4): 115 − 118.

    Liu Chengcai, Liu Chengdan, Liu Weiwei, et al. Numerical simulation of keyhole evolution for 2219 aluminum alloy electron beam spot welding process[J]. Transactions of the China Welding Institution, 2016, 37(4): 115 − 118.
    Liu Chengcai, He Jingshan, Fan Yongbin. Numerical analysis of thermal fluid transportation during electron beam welding of 2219 aluminum alloy plate and experimental validation[J]. China Welding, 2016, 25(2): 21 − 26.
    罗怡, 刘金合, 叶宏, 等. 镁合金真空电子束深熔焊接及焊缝成形数值模拟[J]. 焊接学报, 2010, 31(6): 65 − 68.

    Luo Yi, Liu Jinhe, Ye Hong, et al. Numerical simulation on electron beam deep penetration welding and weld appearance of magnesium alloy[J]. Transactions of the China Welding Institution, 2010, 31(6): 65 − 68.
    房玉超, 杨子酉, 何景山. 电子束点焊熔池的液态金属冲刷效应作用规律[J]. 焊接学报, 2019, 40(6): 137 − 142. doi: 10.12073/j.hjxb.2019400168

    Fang Yuchao, Yang Ziyou, He Jingshan. Study on liquid metal flushing effect during electron beam spot welding[J]. Transactions of the China Welding Institution, 2019, 40(6): 137 − 142. doi: 10.12073/j.hjxb.2019400168
    Yang Ziyou, Fang Yuchao, He Jingshan. Numerical simulation of heat transfer and fluid flow during vacuum electron beam welding of 2219 aluminium girth joints[J]. Vacuum, 2020, 175: 109256. doi: 10.1016/j.vacuum.2020.109256
    房玉超, 杨子酉, 何景山. 电子束横焊3 mm纯铌板的熔池形态[J]. 稀有金属材料与工程, 2018, 47(6): 1896 − 1900.

    Fang Yuchao, Yang Ziyou, He Jingshan. Molten pool state for horizontal EBW on 3 mm niobium plate[J]. Rare Metal Materials and Engineering, 2018, 47(6): 1896 − 1900.
    Wang Shaogang, Wu Xinqiang. Investigation on the microstructure and mechanical properties of Ti-6Al-4V alloy joints with electron beam welding[J]. Materials & Design, 2012, 36: 663 − 670.
    Trushnikov D N, Koleva E G, Mladenov G M. Effect of beam deflection oscillations on the weld geometry[J]. Journal of Materials Processing Technology, 2013, 213: 1623 − 1634. doi: 10.1016/j.jmatprotec.2013.03.028
    Chen Guoqing, Liu Junpen, Shu Xi, et al. Beam scanning effect on properties optimization of thick-plate 2A12 aluminum alloy electron-beam welding joints[J]. Materials Science & Engineering A, 2019, 744: 583 − 592.
    郭青蔚, 王肇信. 现代铌钽冶金[M]. 北京: 冶金工业出版社, 2009.
    Leitner M, Pottlacher G. Density of liquid niobium and tungsten and the estimation of critical point data[J]. Metallurgical and Materials Transactions A, 2019, 50(A): 3646 − 3653.
    Paradis P F, Ishikawa T, Yoda1 S. Non-contact measurements of surface tension and viscosity of niobium, zirconium, and titanium using an electrostatic levitation furnace[J]. International Journal of Thermophysics, 2002, 23(3): 825 − 842. doi: 10.1023/A:1015459222027
    Joy D C. Monte carlo modeling for microscopy and microanalysis[M]. First ed, Oxford University Press, New York, 1995.
    Kanaya K, Okayama S. Penetration and energy-loss theory of electrons in solid targets[J]. Journal of Physics D: Applied Physics, 1972, 5: 43 − 58. doi: 10.1088/0022-3727/5/1/308
    Von Allmen M. Laser drilling velocity in metals[J]. Journal of Applied Physics, 1976, 47: 5460 − 5463. doi: 10.1063/1.322578
    Landau L D, Lifshitz E M. Statistical physics[M]. New York: Pergamon Press, 1969.
    Batanov V A, Bunkin F V, Prokhorov A M. Evaporation of metallic targets caused by intense optical radiation[J]. Soviet Physics-JETP, 1973, 36: 311 − 322.
    Knight C J. Theoretical modeling of rapid surface vaporization with back pressure[J]. American Institute of Aeronautics and Astronautics Journal, 1979, 17: 519 − 523. doi: 10.2514/3.61164
  • Related Articles

    [1]ZHAO Yufeng, SONG Laidong, WANG Hongyu, JIANG Yinfang, HU Zhanming. Influence of WC addition on the wear resistance mechanism of laser additively manufactured Fe-Mn-Si-Cr-Ni alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240721001
    [2]ZHOU Yaju, YIN Shengming, XIA Yongzhong, YI Guoqiang, XUE Lihong, YAN Youwei. Effect of heat treatment on the microstructure and mechanical properties of wire arc additively manufactured ferrite/martensitic steel for nuclear applications[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 18-26. DOI: 10.12073/j.hjxb.20221011001
    [3]WANG Hongyu, HUANG Jinlei, CHEN Sheng, ZHU Jian, MAO Jizhou. Analysis of the theory and temperature field of additive manufacturing with powder core wire based on Cu-Al-Fe alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 111-119. DOI: 10.12073/j.hjxb.20220519002
    [4]ZHU Jian, WANG Hongyu, SHI Donghui, HUANG Jinlei, MAO Jizhou. Element loss behavior and compensation of additive manufacturing memory alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 50-55. DOI: 10.12073/j.hjxb.20220105001
    [5]XU Bo, WANG Ying, ZHANG Meng, YANG Zhenwen, WANG Dongpo. Effect of Nb alloying on wire arc additive manufacturing NiTi-based shape memory alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 1-7. DOI: 10.12073/j.hjxb.20210317003
    [6]ZHANG Liang, LIU Zhiquan, GUO Yonghuan, YANG Fan, ZHONG Sujuan. Effects of CuZnAl memory particles on the microstructures and properties of brass/Sn/brass solder joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(12): 53-57. DOI: 10.12073/j.hjxb.2018390297
    [7]WANG Yingling, LI Hong, LI Zhuoxin, FENG Jicai. Microstructure and properties of transient liquid phase diffusion bonded joint for TiNi shape memory alloy and stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 77-80.
    [8]ZHANG Chunhua, ZHANG Zhuo, ZHANG Song, HAN Zhong, MAN Hauchung. Fretting wear behavior of laser surface melted NiTi shape memory alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 22-24,28.
    [9]XU Yue-lan, CHENG Zhi-fu, FAN Xiao-long, CHU Cheng-lin, WANG Shi-dong. Plasma beam welding of shape memory alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (12): 89-92.
    [10]XUE Song-bai, LÜ Xiao-chun, ZHANG Hui-wen. Resistance brazing technology of TiNi shape memory alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 1-4.

Catalog

    Article views (423) PDF downloads (23) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return