Advanced Search
ZENG Kai, SUN Xiaoting, XING Baoying, FENG Yuyang. Process optimization and fracture characteristic analysis of DP780 high strength steel weld-bonding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 77-83. DOI: 10.12073/j.hjxb.20191017001
Citation: ZENG Kai, SUN Xiaoting, XING Baoying, FENG Yuyang. Process optimization and fracture characteristic analysis of DP780 high strength steel weld-bonding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 77-83. DOI: 10.12073/j.hjxb.20191017001

Process optimization and fracture characteristic analysis of DP780 high strength steel weld-bonding

More Information
  • Received Date: October 16, 2019
  • Available Online: July 26, 2020
  • Based on Box-Behnken Design (BBD) method, experimental study on weld-bonding of DP780 high strength steel was carried out. The multiple regression equations between process parameters (welding current, welding time, electrode pressure) and response values (energy absorption value, failure load) were established, and the reliability of the model was verified by experiment. The result shows that welding current and welding time have a positive correlation with energy absorption value and failure load, while pressure has a negative correlation with energy absorption value and failure load. The optimum process parameters are welding current 8 kA, welding time 150 ms and electrode pressure 0.3 MPa. Under the corresponding parameters, the energy absorption value of the joint reaches 93.22 J, and the failure load reaches 17 688.46 N. Under static tension test conditions, there are two failure modes of weld-bonding joints: nugget pull-out and interface failure, and the former mode corresponds to higher energy absorption value and failure load. Fracture analysis shows that the fracture of nugget pull-out exhibits typical ductile fracture characteristics, and the fracture of the interface failure is characterized by cleavage fracture and complemented by ductile fracture.
  • Konoplin A Y, Baurova N I. The structure of the spot weld and weld-affected zone in a weld-bonded joint[J]. Polymer Science, 2019, 12(3): 247 − 250.
    Yang L, Jiang X H, Wang X H. Study on welding process performance of HG70D high strength steel plate[J]. China Welding, 2018, 27(3): 59 − 64.
    Wadea Ameen, Alsamhan A M, Darwish S M. Effect of overlap support characteristics on peel strength of weld-bonded joints[J]. International Journal of Experimental Design and Process Optimisation, 2019, 6(1): 74 − 87. doi: 10.1504/IJEDPO.2019.097458
    Colombo T, Santos G D, Teruel P, et al. Microstructure evolution and failure modes of a resistance spot welded TWIP steel[J]. Soldagem & Inspecao, 2018, 23(4): 460 − 473.
    沈洁, 张延松. 三层钢板胶焊熔核形成过程的有限元分析[J]. 上海交通大学学报, 2019, 53(6): 726 − 733.

    Shen Jie, Zhang Yansong. Finite element analysis of weld nugget formation in weld-bonding of three stacks of steel sheets[J]. Journal of Shanghai Jiaotong University, 2019, 53(6): 726 − 733.
    肖智杰, 曾凯, 何晓聪, 等. SUS304不锈钢点焊与胶焊接头的疲劳强度分析[J]. 材料导报, 2017, 31(16): 112 − 116. doi: 10.11896/j.issn.1005-023X.2017.016.023

    Xiao Zhijie, Zeng Kai, He Xiaocong, et al. Fatigue strength analysis of spot weld and weld-bonded joint for SUS304 stainless steel[J]. Materials Review, 2017, 31(16): 112 − 116. doi: 10.11896/j.issn.1005-023X.2017.016.023
    Almeida F J S, Campilho R D S G, Silva F J G. Strength prediction of T-peel joints by a hybrid spot-welding/adhesive bonding technique[J]. Journal of Adhesion, 2018, 94(3): 181 − 198. doi: 10.1080/00218464.2016.1244013
    孙海涛, 张延松, 来新民, 等. 双相钢胶焊与电阻点焊接头性能对比分析[J]. 焊接学报, 2009, 30(10): 17 − 20.

    Sun Haitao, Zhang Yansong, Lai Xinmin, et al. Comparison of joint performance between weld-bonding and resistance spot welding of dual-phase steel[J]. Transactions the China Welding Institution, 2009, 30(10): 17 − 20.
    Zhang Y S, Sun H T, Chen G L, et al. Comparison of mechanical properties and microstructure of weld nugget between weld-bonded and spot-welded dual-phase steel[J]. Proceedings of the Institution of Mechanical Engineers. Part B: Engineering Manufacture, 2009, 233(10): 1341 − 1350.
    常保华, 史耀武, 卢良清. 焊点间距对胶焊接头应力应变分布和强度的影响[J]. 材料工程, 2000(1): 33 − 37. doi: 10.3969/j.issn.1001-4381.2000.01.009

    Chang Baohua, Shi Yaowu, Lu Liangqing. Effect of spot pitch on stress and strain distribution and strength of weld bonded joints[J]. Journal of Materials and Engineering, 2000(1): 33 − 37. doi: 10.3969/j.issn.1001-4381.2000.01.009
    Xu W, Liu L, Zhou Y, et al. Tensile and fatigue properties of weld-bonded and adhesive-bonded magnesium alloy joints[J]. Materials Science and Engineering: A, 2013(563): 125 − 132.
    游敏, 晏嘉陵, 郑小玲, 等. 弹性模量对铝胶焊搭接接头应力分布的影响[J]. 航空材料学报, 2009, 29(3): 98 − 101. doi: 10.3969/j.issn.1005-5053.2009.03.019

    You Min, Yan Jialing, Zheng Xiaoling, et al. Effect of elastic modulus of adhesives on stress distribution in weld-bonded joints[J]. Journal of Aeronautical Materials, 2009, 29(3): 98 − 101. doi: 10.3969/j.issn.1005-5053.2009.03.019
    Khan F, Dwivedi D K, Sharma S. Development of response surface model for tensile shear strength of weld-bonds of aluminium alloy 6061 T651[J]. Materials & Design, 2012, 34: 673 − 678.
    张龙, 曾凯, 何晓聪, 等. 钛合金胶接点焊与电阻点焊接头性能对比分析[J]. 焊接学报, 2018, 39(1): 55 − 60. doi: 10.12073/j.hjxb.2018390013

    Zhang Long, Zeng Kai, He Xiaocong, et al. Contrastive analysis of properties of titanium alloy weld-bonded and resistance spot welding joints[J]. Transactions the China Welding Institution, 2018, 39(1): 55 − 60. doi: 10.12073/j.hjxb.2018390013
  • Related Articles

    [1]LI Zhao, LIU Yang, ZHANG Hao, SUN Fenglian. Bonding strength and plasticity of multiscale composite nanosilver paste for low temperature sintering[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 106-110. DOI: 10.12073/j.hjxb.2019400271
    [2]LI Haixin, WEI Hongmei, HE Peng, FENG Jicai. Interfacial microstructure and bonding strength of diffusion bonded TiAl/Ti/Nb/GH99 alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (9): 9-12.
    [3]LI Haixin, LIN Tiesong, HE Peng, WEI Hongmei, FENG Jicai. Effect of holding time on interface structure and bonding strength of diffusion bonding joint of TiAl and Ni-based alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (6): 43-46.
    [4]HE Peng, YANG Xiujuan, FENG Jicai, LIU Hong. Effects of holding time on interface structure and bonding strength of brazed joint of hydrogenated TC4 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (2): 1-4.
    [5]WANG Fu-liang, LI Jun-hui, HAN Lei, ZHONG Jue. Effect of bonding time on thick aluminum wire wedge bonding strength[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (5): 47-51.
    [6]QIU Chang-jun, ZHOU Wei, HE Bin, FAN Xiang-fang. Study and finite element method analysis for bond strength of high-strength coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (4): 105-107.
    [7]FENG Ji-cai, JING Xiang-meng, ZHANG Li-xia, LIU Hong. Interface structure and bonding strength of brazed joint of TiC cermet/steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (1): 5-8.
    [8]LONG Zhi-li, HAN lei, WU Yun-xin, ZHOU Hong-quan. Effect of different temperature on strength of thermosonic bonding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (8): 23-26,38.
    [9]ZOU Jia-sheng, XU Zhi-rong, ZHAO Qi-zhang, CHEN Zheng. Bonding strength of double partial transient liquid phase bonding with Si3N4/Ti/Cu/Ni/Cu/Ti/Si3N4[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (2): 41-44.
    [10]Liu Huijie, Feng Jicai, Qian Yiyu. Interface Structures and Bonding Strength of SiC/TiAl Joints in Diffusion Bonding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (3): 170-174.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (458) PDF downloads (13) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return