Advanced Search
HE Diqiu, SUN Youqing, MA Li, LAI Ruilin. Analysis of parameters and properties of nickel-chromium- silicon-copper friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(11): 83-88. DOI: 10.12073/j.hjxb.2018390278
Citation: HE Diqiu, SUN Youqing, MA Li, LAI Ruilin. Analysis of parameters and properties of nickel-chromium- silicon-copper friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(11): 83-88. DOI: 10.12073/j.hjxb.2018390278

Analysis of parameters and properties of nickel-chromium- silicon-copper friction stir welding

More Information
  • Received Date: May 27, 2017
  • In order to investigate the process parameters and properties of CuNiCrSi copper alloy jointed by friction stir welding, the orthogonal experimental method was used to optimize the process parameters, and the properties and material flow were studied. The results show that the welding speed is the most significant factor affecting the welding process. The experiment has got the best combination of process parameters, and the tensile strength of the weld was 491.4 MPa, which was 84.7% of the tensile strength of the base metal under these optimum welding parameters.When the welding speed is too large, there will be tunnel defects on the advancing side of the weld, and the flow of the forward material is more complicated than that of the retreating side. When the welding speed is too small, the surface will have fin.The coarse particles in the parent material area are segnagations of chromium and silicon, and the nickel is uniformly distributed in the material. The grains in the nuggest zone become smaller as the welding speed increases. Under the optimal parameters, the grain size of the nuggest zone is small and uniform, but the hardness is lower than that of the base metal. The fracture method is ductile fracture, which indicates that the material has good toughness.
  • 王 丽, 刘 刚, 刘关强, 等. C18000铜镍铬硅合金棒生产工艺研究[J]. 铜加工, 2006(3): 26 ? 30
    Wang Li, Liu Gang, Liu Guanqiang, et al. Study on production technology of C18000 Cu-Ni-Cr-Si alloy rod[J]. Copper Processing, 2006(3): 26 ? 30
    贺地求, 柳 瑞, 罗家文. 基于正交试验的2024-T4铝合金超声辅助搅拌摩擦焊的研究[J]. 热加工工艺, 2016(17): 18 ? 21
    He Diqiu, Liu Rui, Luo Jiawen. Study on ultrasonic assisted friction stir welding of 2024-T4 aluminum alloy based on orthogonal test[J]. Hot Working Technology, 2016(17): 18 ? 21
    杨亚楠, 刘振邦, 仪家良. 搅拌摩擦焊技术应用现状与发展趋势[J]. 工程技术研究, 2017(2): 57 ? 58
    Yang Yanan, Liu Zhenbang, Yi Jialiang. Application status and development trend of friction stir welding technology[J]. Engineering Technology and Application, 2017(2): 57 ? 58
    陈振月, 王 月. 搅拌摩擦焊接技术研究进展[J]. 沈阳航空航天大学学报, 2017, 34(1): 1 ? 14
    Chen Zhenyue, Wang Yue. Research progress of friction stir welding technology[J]. Journal of Shenyang Aerospace University, 2017, 34(1): 1 ? 14
    Amarnath V, Karuppuswamy P, Balasubramanian V. Comparative study of joining process of high conductivity electrolytic tough pitch copper used in automotive industries[J]. Int. J. Vehicle Structure & Systems, 2017, 9(1): 1 ? 6.
    Xu Nan, Song Qining, Bao Yefeng, et al. Achieving good strength-ductility synergy of friction stir welded Cu joint by using large load with extremely low welding speed and rotation rate[J]. Materials Science & Engineering A, 2017, A 687: 73 ? 81.
    Zettler R, Wtsh, Vugrin T, et al. Effects and defects of friction stir welds[M]. Cambridge, UK, Daniela Lohwasser and Zhan Chen, 2010.
    Humphreys F, Hatherly M. Recrystalization and related annealing phenomena. 2nd[M]. New York: Pergamon, 2004.
    Benavides S, Li Y, Murr L E, et al. Low-temperature friction stir welding of 2024 aluminum[J]. Scripta Mater, 1999, 41(8): 809 ? 815.
    Shen J J, Liu H J, Cui F. Effect of welding speed on microstructure and mechanical properties of friction stir welded copper[J]. Materials and Design, 2010, 31: 3937 ? 3942.
    Ma Z Y, Mishra R S, Mahoney M W, et al. Superplastic deformation behavior of friction stir processed 7075Al alloy[J]. Acta Mater, 2002, 50: 4419 ? 4430.
    Lee Won-Bae, Jung Seung-Boo. The joint properties of copper by friction stir welding[J]. Materials Letters, 2004, 58: 1041 ? 1046.
    Sato Y S, Kokawa H, Enomoto M, et al. Microstructural evolution of 6063 aluminum during friction-stir welding[J]. Metallurgical & Materials Transactions A, 1999, 30(9): 2429 ? 2437.
  • Related Articles

    [1]ZHANG Hongchang, LI Yinan, YU Jiang, ZHANG Jingyi, ZHANG Hongtao, GAO Jianguo. PAW−MIG wire oscillating hybrid welding technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 61-66, 82. DOI: 10.12073/j.hjxb.20220327002
    [2]WEI Shouzheng, WANG Zhiying, REN Xiaopeng, WANG Jianguo. Influence of bevel angle and wire offset on the microstructure and mechanical properties of Ti/Al joint by cold arc MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 59-66. DOI: 10.12073/j.hjxb.20210317002
    [3]ZHANG Tiehao, YANG Zhibin, ZHANG Zhiyi, ZHANG Haijun, Shi Chunyuan. Effects of MIG welding superposition on microstructure and property of 6A01-T5 FSW joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(9): 81-88, 96. DOI: 10.12073/j.hjxb.20200112001
    [4]DONG Xiaojing, LI Huan, YANG Lijun, LIANG Yu. Microstructure and mechanical properties of pulse MIG aluminum alloy welded joints by means of a novel multi-strands composite welding wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 61-67. DOI: 10.12073/j.hjxb.2019400289
    [5]GAO Yan, CUI Li, CHANG Yaoqing, GU Changshi, HE Dingyong. Microstructures and properties of fiber laser-MIG hybrid welded joints for marine corrosion resistant steel DH36[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 60-66. DOI: 10.12073/j.hjxb.2019400128
    [6]ZHOU Shujun, WU Youfa, YANG Yi, LIU Xu, ZHAN Xiaohong. Comparative analysis on mechanical properties of dissimilar steel welded joints by LMHW and MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 133-137. DOI: 10.12073/j.hjxb.2019400056
    [7]LIANG Zhimin<sup>1</sup>, SHI Kangning<sup>1</sup>, LI Weipo<sup>1</sup>, CAO Yi<sup>1</sup>, LU Hao<sup>2</sup>. Microstructure and mechanical properties of water-cooled MIG welded joints of 6N01 aluminium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(9): 25-30. DOI: 10.12073/j.hjxb.2018390218
    [8]MA Xiao, SUN Daqian, DUAN Zhenzhen, GU Xiaoyan, LI Hongmei. Effects of Cu on microstructures and properties of laser-MIG hybrid welded joint of steel/aluminum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(12): 41-44.
    [9]ZHU Zongtao, ZHU Quanchao, LI Yuanxing, CHEN Hui. Microstructure and mechanical property of A7N01 aluminum alloy welded by laser-MIG hybrid method with assisting ultrasonic vibration[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 80-84.
    [10]LEI Yucheng, ZHU Fei, YUAN Weijin, CHENG Xiaonong. Effect of welding parameters on microstructure and mechanical propertes of welded joint in PAW of SiCp/6061Al[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (4): 45-48.
  • Cited by

    Periodical cited type(4)

    1. 李国坤,杨梦颖,潘远樵,冯鑫鑫,王怡如,王泽宇. “芯—鞘”结构强化C_f/SiC-Nb钎焊接头成形机理. 焊接学报. 2025(02): 80-86 . 本站查看
    2. 王星星,李阳,崔大田,杨晓红,何鹏,龙伟民. 非晶钎料国内外研究进展及应用. 中国有色金属学报. 2023(08): 2635-2646 .
    3. 单文禹,王颖,杨振文,王东坡. TiZrNiCu钎焊Si_3N_4-MoSi_2复合陶瓷与Nb接头组织及力学性能. 稀有金属材料与工程. 2022(03): 927-933 .
    4. 李娟,李立新,秦庆东,凃泉,何鹏. 填充泡沫Ti/AlSiMg的SiC陶瓷钎焊接头的组织与性能. 焊接学报. 2022(09): 86-91+119 . 本站查看

    Other cited types(0)

Catalog

    Article views (664) PDF downloads (1) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return