Advanced Search
ZHANG Hongchang, LI Yinan, YU Jiang, ZHANG Jingyi, ZHANG Hongtao, GAO Jianguo. PAW−MIG wire oscillating hybrid welding technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 61-66, 82. DOI: 10.12073/j.hjxb.20220327002
Citation: ZHANG Hongchang, LI Yinan, YU Jiang, ZHANG Jingyi, ZHANG Hongtao, GAO Jianguo. PAW−MIG wire oscillating hybrid welding technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 61-66, 82. DOI: 10.12073/j.hjxb.20220327002

PAW−MIG wire oscillating hybrid welding technology

More Information
  • Received Date: March 26, 2022
  • Available Online: February 15, 2023
  • In order to solve the problem of double arc repulsion in the existing PAW−MIG hybrid welding process, a new welding process based on the regular change of MIG wire displacement was proposed, which combined MIG wire oscillation with plasma arc in common weld pool. The welding process test was carried out by adjusting the rotation (oscillation frequency) and amplitude of MIG welding wire motor. The results show that with the increase of rotational speed (oscillation frequency), the repulsion between plasma arc and MIG arc decreases and the coupling trend increases. Especially when the rotational speed is 2000 r/min(oscillation frequency 33 Hz), the common weld pool effect is obvious. When the amplitude of MIG torch is 1 mm, the arc shape is the most stable. When the oscillation frequency and amplitude are too large, it is not conducive to the stability of welding process. The oscillation speeds up the droplet transition frequency so that the tip of the welding wire presents a small droplet transition and reduces the welding splash. The mechanical properties of the butt test show that the tensile strength and bending strength increase first and then decrease with the increase of the oscillation frequency. The oscillation enhances the stirring ability of the molten pool metal and effectively improves the mechanical properties of the welded joint.
  • 韩蛟, 韩永全, 洪海涛, 等. 铝合金等离子-MIG复合焊接电弧行为[J]. 焊接学报, 2022, 43(2): 45 − 49. doi: 10.12073/j.hjxb.20210702001

    Han Jiao, Han Yongquan, Hong Haitao, et al. Arc behavior in plasma-MIG welding of aluminum alloy[J]. Transactions of the China Welding Institution, 2022, 43(2): 45 − 49. doi: 10.12073/j.hjxb.20210702001
    Han Y, Tong J, Hong H, et al. The influence of hybrid arc coupling mechanism on GMAW arc in VPPA-GMAW hybrid welding of aluminum alloys[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(1): 989 − 994.
    刘甲, 徐家磊, 马照伟, 等. 钛合金等离子和MIG复合焊接技术研究[J]. 材料导报, 2021, 35(S2): 358 − 360.

    Liu Jia, Xu Jialei, Ma Zhaowei, et al. Study on plasma and MIG hybrid welding of titanium alloy[J]. Materials Reports, 2021, 35(S2): 358 − 360.
    Han Yongquan, Han Jiao, Chen Yan, et al. Stability of fiber laser-MIG hybrid welding of high strength aluminum alloy[J]. China Welding, 2021, 30(3): 7 − 11.
    Jia C B, Liu X F, Wu C S, et al. Stereo analysis on the keyhole and weld pool behaviors in K-PAW with triple CCD cameras[J]. Journal of Manufacturing Processes, 2018, 32: 754 − 762. doi: 10.1016/j.jmapro.2018.03.026
    Jia C B, Liu X F, Zhang G K, et al. Penetration/keyhole status prediction and model visualization based on deep learning algorithm in plasma arc welding[J]. The International Journal of Advanced Manufacturing Technology, 2021, 117(11): 3577 − 3597.
    张洪涛, 桑健, 王琪晨, 等. TATM700钢等离子-MIG复合焊接工艺[J]. 焊接学报, 2019, 40(12): 25 − 30.

    Zhang Hongtao, Sang Jian, Wang Qichen, et al. Plasma MIG hybrid welding of TATM700 steel[J]. Transactions of the China Welding Institution, 2019, 40(12): 25 − 30.
    Yu J, Zhang H, Yang X, et al. Arc characteristics and welding process of magnetic field assisting plasma-GMAW-P[J]. Welding Journal, 2021, 100(1): 1s − 12s. doi: 10.29391/2021.100.001
    Yu J, Wang B, Zhang H, et al. Characteristics of magnetic field assisting plasma GMAW-P[J]. Welding Journal, 2020, 99(1): 25s − 38s. doi: 10.29391/2020.99.003
    Wu H, Chang Y, Lu L, et al. Review on magnetically controlled arc welding process[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91: 4263 − 4273. doi: 10.1007/s00170-017-0068-9
    李岩, 王领, 张冀翔, 等. 基于电弧-熔池耦合的小孔型等离子弧焊接简化模型[J]. 机械工程学报, 2021, 57(18): 144 − 152. doi: 10.3901/JME.2021.18.144

    Li Yan, Wang Ling, Zhang Jixiang, et al. Simplified model of small-pass plasma arc welding based on arc-molten pool coupling[J]. Journal of Mechanical Engineering, 2021, 57(18): 144 − 152. doi: 10.3901/JME.2021.18.144
    王林, 武传松, 杨丰兆, 等. 外加磁场对高速GMAW电弧和熔池行为的主动调控效应[J]. 机械工程学报, 2016, 52(2): 1 − 6. doi: 10.3901/JME.2016.02.001

    Wang Lin, Wu Chuansong, Yang Fengzhao, et al. Active regulation effect of applied magnetic field on high speed GMAW arc and molten pool behavior[J]. Journal of Mechanical Engineering, 2016, 52(2): 1 − 6. doi: 10.3901/JME.2016.02.001
  • Related Articles

    [1]ZHANG He, JIN Jun, JIANG Ping, ZHANG Fengdong, ZHANG Zhenpeng, ZHOU Zhikai. Study on microstructure and mechanical properties of 6061 aluminum alloy prepared by oscillating laser-arc hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 94-102. DOI: 10.12073/j.hjxb.20230205001
    [2]ZHOU Li, ZHANG Renxiao, SHU Fengyuan, HUANG Yongxian, FENG Jicai. Microstructure and mechanical properties of friction stir welded joint of Q235 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 80-84. DOI: 10.12073/j.hjxb.2019400076
    [3]XUE Zhiqing, HU Shengsun, ZUO Di, SHEN Junqi. Microstructural characteristics and mechanical properties of laser-welded copper and aluminum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (10): 51-54.
    [4]WU Wei, CHENG Guangfu, GAO Hongming, WU Lin. Microstructure transformation and mechanical properties of TC4 alloy joints welded by TIG[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (7): 81-84.
    [5]LI Hongmei, SUN Daqian, WANG Wenquan, XUAN Zhaozhi, REN Zhenan. Microstructure and mechanical properties of austenite stainless steel wire joints welded by laser[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (6): 71-74.
    [6]WANG Zhicheng, QIAO Jisen, CHEN Jianhong, ZHU Liang. Investigation on the local mechanical properties of the automobile aluminium alloy welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 21-24.
    [7]ZHANG Liang, XUE Songbai, HAN Zongjie, YU Shenglin, SHENG Zhong. Investigation of mechanical property and fracture morphology of lead-free soldered joints of fine pitch devices[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (9): 35-38.
    [8]DONG Junhui, ZHANG Yanfei, TANG Zhengkui. Prediction of mechanical properties of welded joint using fuzzy neural network technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 29-33.
    [9]SONG Jianling, LIN Sanbao, YANG Chunli, FAN Chenglei. Microstructure and mechanical properties of TIG brazing of stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (4): 105-108.
    [10]ZHANG Yanfei, DONG Junhui, ZHANG Yongzhi. Prediction mechanical properties of welded joints based on ANFIS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (9): 5-8.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (264) PDF downloads (50) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return