Advanced Search
WANG Liangliang1,2,3, FAN Shaozhong1,3, FU Yonghong1,2, YAN Honghua1,2, XU Yunhua2,3, ZHONG Lisheng2,4, LIN Hong1. In situ TiC dense particles layer tissue properties andtoughening mechanism on gray cast iron surface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 121-124. DOI: 10.12073/j.hjxb.2018390136
Citation: WANG Liangliang1,2,3, FAN Shaozhong1,3, FU Yonghong1,2, YAN Honghua1,2, XU Yunhua2,3, ZHONG Lisheng2,4, LIN Hong1. In situ TiC dense particles layer tissue properties andtoughening mechanism on gray cast iron surface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 121-124. DOI: 10.12073/j.hjxb.2018390136

In situ TiC dense particles layer tissue properties andtoughening mechanism on gray cast iron surface

More Information
  • Received Date: August 15, 2016
  • Dense titanium carbide reinforced iron-based surface composites were prepared via casting-infiltration and heat treatment process. The phase composition, microstructures and microscopic tissue of samples were researched. Meanwhile, the microhardness and fracture toughness were also studied. The results shows: Titanium carbide dense ceramic layer in situ formed by Ti atoms of titanium plate and C atoms dissolved from graphite sheet diffuse into the metallurgical bonding surface, and the bonding interface of dense layer with titanium plate and substrate are good and clean. The average microhardness of dense ceramic layer is 3 027.08 HV0.1, far greater than the residual titanium plate and matrix hardness. With 20 N loads, the dense ceramic layer longitudinal sectional cracks have initiation and propagation on the top of the indentation. The fracture toughness is between 4.5 MPa·m1/2and 14.2 MPa·m1/2, far higher than normal ceramics.
  • 毛小南, 周 廉, 曾泉浦, 等. TiC颗粒增强钛基复合材料的形变断裂[J]. 稀有金属材料与工程, 2000, 29(4): 217-220.Mao Xiaonan, Zhou Lian, Zeng Quanpu,et al. Deformational fracture of titanium matrix composites reinforced by TiC particles[J]. Rare Metal Materials and Engineering, 2000, 29(4): 217-220.[2] 高 立, 周 芳, 何良华. Al-TiC2-C系激光熔覆制备TiC/Fe复合涂层及其组织与性能[J]. 表面技术, 2011, 40(6): 7-9.Gao Li, Zhou Fang, He Lianghua. Microstructure and property of laser cladding TiC/Fe-based composite coating in Al-TiO2-C system[J]. Surface Technology, 2011, 40(6): 7-9.[3] 肖茂华, 赵 威, 何 宁, 等. WC-Co/GH4169摩擦副在不同介质下的磨损性能研究[J]. 热加工工艺, 2013, 42(24): 90-92.Xiao Maohua, Zhao Wei, He Ning,et al. Study on friction and wear properties of WC-Co sliding against GH4169 in different gas[J]. Hot Working Technology, 2013, 42(24): 90-92.[4] 张苹苹, 沈卫平, 李 岩. 热冲击对添加纳米TaC的SPS烧结钨力学性能的影响[J]. 热加工工艺, 2012, 41(4): 88-91.Zhang Pingping, Shen Weiping, Li Yan. Effect of thermal shock on mechanical properties of dispersion strengthened tungsten with nano-TaC by SPS[J]. Hot Working Technology, 2012, 41(4): 88-91.[5] Li Qingtang, Lei Yongping, Fu Hanguang. Laser cladding in-situ NbC particle reinforced Fe-based composite coatings with rare earth oxide addition[J]. Surface and Coatings Technology, 2014, 239(25): 102-107.[6] 宗 琳, 刘政军, 李乐成, 等. 含钛铁基耐磨复合材料的研制[J]. 焊接学报, 2012, 33(4): 53-56.Zong Lin, Liu Zhengjun, Li Lecheng,et al. Investigation on wear resistance of Fe-based composite material containing titanium[J]. Transactions of the China Welding Institution, 2012, 33(4): 53-56.[7] 刘政军, 李乐成, 宗 琳, 等. 原位合成TiC-M7C3陶瓷硬质相显微组织的分析[J]. 焊接学报, 2012, 33(3): 65-68.Liu Zhengjun, Li Lecheng, Zong Lin,et al. Analysis on microstructure of in-situ synthesis TiC-M7C3 ceramic hard phase[J]. Transactions of the China Welding Institution, 2012, 33(3): 65-68.[8] 赫庆坤, 王 勇, 赵卫民, 等. 激光原位合成TiC-Ni-Mo涂层界面组织与磨损性能[J]. 焊接学报, 2009, 30(1): 77-80.He Qingkun, Wang Yong, Zhao Weimin,et al. Interface microstructure and wear properties of TiC-Ni-Mo coatings prepared by in-situ fabrication of laser cladding[J]. Transactions of the China Welding Institution, 2009, 30(1): 77-80.[9] 王建斌, 许云华, 李成晨, 等. 原位合成TiC颗粒增强铁基复合材料热、 动力学的研究[J]. 热加工工艺, 2010, 39(8): 104-107.Wang Jianbin, Xu Yunhua, Li Chengchen,et al. Research on thermodynamics and kinetics of in-situ synthesized TiC/Fe composite coating prepared by laser cladding[J]. Thermal Processing, 2010, 39(8): 104-107.[10] 刘兆晶, 姚秀荣, 章德铭, 等. 铁基复合材料中原位TiC增强颗粒生成机制[J]. 哈尔滨理工大学学报, 2004, 4(9): 31-35.Liu Zhaojing, Yao Xiurong, Zhang Deming,et al. Study on formation mechanism of in situ TiC particle-reinforced in iron matrix composites[J]. Journal of Harbin University of Science and Technology, 2004, 4(9): 31-35.[11] 王亮亮, 许云华, 钟黎声, 等. TiC/Fe表面梯度复合材料微区组织及陶瓷层磨损性能研究[J]. 焊接学报, 2013, 34(5): 49-53.Wang Liangliang, Xu Yunhua, Zhong Lisheng,et al. Microstructure of matrix and wear resistance of ceramic layer of TiC/Fe surface gradient composites[J]. Transactions of China Welding and Institution, 2013, 34(5): 49-53.[12] Sharifitabar M, Vahdati Khaki J, Haddad Sabzevar M. Microstructure and wear resistance of in-situ TiC-Al2O3particles reinforced Fe-based coatings produced by gas tungsten arc cladding[J]. Surface and Coatings Technology, 2016, 285(2016): 47-56.[13] Wang Zhi, Lin Tao, He Xinbo,et al. Fabrication and properties of the TiC reinforced high-strength steel matrix composite[J]. International Journal of Refractory Metals and Hard Materials, 2016(58): 16-21.[14] Zhong Lisheng, Xu Yunhua, Mirabbos Hojamberdiev. In situ fabrication of titanium carbide particulates-reinforced iron matrix composites[J]. Materials and Design, 2011(32): 3790-3795.[15] Lin Chiming, Chang Chiaming, Chen Jiehao,et al. Hardness, toughness and cracking systems of primary (Cr,Fe)23C6 and (Cr,Fe)7C3 carbides in high-carbon Cr-based alloys by indentation[J]. Materials Science and Engineering A, 2010(527): 5038-5043.[16] Gu Shengting, Chai Guozhong, Wu Huaping,et al. Characterization of local mechanical properties of laser-cladding H13-TiC composite coatings using nanoindentation and finite element analysis[J]. Materials and Design, 2012(39): 72-80.
  • Related Articles

    [1]WANG Dongpo, ZHANG Zixuan, GAO Wenbin, DENG Caiyan, LIANG Hang, WANG Ting. Comparative analysis of fracture toughness of EBW and TIG welded joints of TC4 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 7-13. DOI: 10.12073/j.hjxb.20220921002
    [2]GAO Shanshan, DI Xinjie, LI Chengning, JIANG Yuanbo, LI Weiwei, JI Lingkang. Effect of strain aging on fracture toughness of welded joints of high-strain pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 22-28. DOI: 10.12073/j.hjxb.20210328001
    [3]WANG Dongpo, LIU Kaiyue, DENG Caiyan, GONG Baoming, WU Shipin, XIAO Na. Effects of PWHT on the impact toughness and fracture toughness of the weld metal under restraint welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(8): 63-67, 78. DOI: 10.12073/j.hjxb.20190914001
    [4]LIU Chang, DENG Caiyan, WANG Sheng, GONG Baoming. Critical fracture toughness of weld metal structure in submerged arc welding of EH36 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 107-110. DOI: 10.12073/j.hjxb.2019400081
    [5]JING Hongyang, LI Shibo, XU Lianyong, ZHAO Lei. Experimental study on high temperature fracture toughness of P92 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 8-12. DOI: 10.12073/j.hjxb.2019400033
    [6]MA Caixia, ZHANG Se, HUANG Xusheng, LIN Chengxiao, MA Fubao, YANG Siqian. Fracture toughness of square drill pipe joint by narrow gap welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (4): 77-80.
    [7]XIAO Guangchun, JING Hongyang, XU Lianyong, JI Jinchuan, LI Wenliang. Research on fracture toughness of high-strength structural steel with prestrain at low temperature[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (3): 41-44.
    [8]Zhou Zhiliang, Liu Shuhua. Effect of PWHT on Fracture Toughness of HAZ in a DQTHT80 Steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1998, (1): 39-43.
    [9]Fan Ruixiang, Tian Xitang, Zhu Hongguan. Fracture toughness of welded joints with crack in transverse hard layer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1993, (1): 12-15.
    [10]Wang Zhihui, Xu Biyu, Ye Ciqi. A STUDY OF THE FRACTURE TOUGHNESS OF THE MARTENSITE LAYER IN AUSTENITIC-FERRITIC DISSIMILAR METAL JOINTS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1989, (2): 95-103.
  • Cited by

    Periodical cited type(6)

    1. 马晓阳,何亮,成应晋,王杏华,程彬,贺智涛. BP神经网络预测船用钢焊接接头力学性能研究. 金属制品. 2024(03): 59-63 .
    2. 黄伟波,赵晓宇. 选区激光熔化成形参数对熔池尺寸的影响. 肇庆学院学报. 2023(05): 65-73+79 .
    3. 马佳博,王成玥,陈峰. 加激光选区熔化成形技术的产品设计三维模型研究. 激光杂志. 2020(05): 134-138 .
    4. 吕小青,王旭,徐连勇,荆洪阳,韩永典. 基于组合模型的MAG焊工艺参数多目标优化. 焊接学报. 2020(02): 6-11+97 . 本站查看
    5. 邢晓芳,贲强,周勇,路浩,韩佩. 基于回归分析的螺母凸焊工艺优化. 焊接学报. 2020(12): 91-96+102 . 本站查看
    6. 常峰博,高亮,陈宇翔,佟志光,李铭钰,滕征泰. 正交法激光焊接双相钢工艺优化. 应用激光. 2020(06): 1061-1066 .

    Other cited types(3)

Catalog

    Article views (473) PDF downloads (0) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return