Advanced Search
Wang Zhihui, Xu Biyu, Ye Ciqi. A STUDY OF THE FRACTURE TOUGHNESS OF THE MARTENSITE LAYER IN AUSTENITIC-FERRITIC DISSIMILAR METAL JOINTS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1989, (2): 95-103.
Citation: Wang Zhihui, Xu Biyu, Ye Ciqi. A STUDY OF THE FRACTURE TOUGHNESS OF THE MARTENSITE LAYER IN AUSTENITIC-FERRITIC DISSIMILAR METAL JOINTS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1989, (2): 95-103.

A STUDY OF THE FRACTURE TOUGHNESS OF THE MARTENSITE LAYER IN AUSTENITIC-FERRITIC DISSIMILAR METAL JOINTS

More Information
  • Received Date: March 19, 1989
  • In the austenitic-ferritic dissimilar metal welded joints the content of alloying elements in the transition zone varies continuously from HAZ to weld. Due to the low level of Ni content, a martensite layer is formed in this zone during the welding process.The Charpy impact test made before indicated that the martensite layer was the weakest zone in toughness in the joints. In this paper, the simulating lest, in which specimens were prepared by casting steels in accordance with the compositions in the martensite layer respectively,was conducted to evaluate the fracture toughness of the martensite layer in the homogeneous structure. The experiments were alse made to investigate the variation in toughness in the different regions of the joint.The results show that the weakest region in toughness in the dissimilar metal joints is not the martensite layer but the overheated zone in the HAZ. The fracture in the overheated zone is caused by the coarse-grained bainite, and it appears as a quasicleavage fracture; however, in the martensite elayer, it appears as a tear fracture.
  • Related Articles

    [1]HE Qiong, WANG Honghong, WANG Yangwen, ZHANG Fuwei, LI Xiaochen. Solidification behavior and characteristics of molten pool of high manganese austenitic steel for cryogenic application[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 60-66. DOI: 10.12073/j.hjxb.20221120001
    [2]CHI Dazhao, MAI Chengle, SUN Changli, GANG Tie. Wavelet package based ultrasonic defect detection method for testing austenitic stainless steel weldment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(12): 43-46.
    [3]XU Feng, XU Jinfeng, ZHAI Qiuya. Microstructural formation of austenitic stainless steel joint by capacitor discharge welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (12): 101-104.
    [4]XUE Gang, ZHAO Fuchen, JING Yanhong, NIU Jicheng, ZHANG Yonghui, GAI Dengyu. Effect of carbon on impact toughness of metal deposited with high strength austenite electrodes[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (8): 89-92.
    [5]LI Hongmei, SUN Daqian, WANG Wenquan, XUAN Zhaozhi, REN Zhenan. Microstructure and mechanical properties of austenite stainless steel wire joints welded by laser[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (6): 71-74.
    [6]ZHANG Tianhong, DU Yi, ZHANG Junxu. Effect of carbon and nitrogen on microstructure and properties of austenite weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (7): 81-84,88.
    [7]LEI A-Li, MA Xiao-Ju, FENG La-Jun. Corrosion of austenitic stainless steel welded joint in sulfur-bearing solution[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (1): 89-92.
    [8]FU Rui-dong, LI Liang-yu, ZHENG Yang-zeng. TIG Welding of High Manganese Austenitic Steel for Super Cryogenic Application[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (3): 21-24.
    [9]Meng Qingsen, Liu Mancai, Yin Sheng yi, Yao Quanfu. Middle Chromium Austenitic Alloy for Hardface Welding of Impact Wear-resitant[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1998, (4): 42-48.
    [10]Lu Wenxiong, Zhang Havqian, Wu Yu, Wang Bao. “AUSTENITE-RICH BAND” IN THE FUSION ZONE OF DISSIMILAR STEEL WELDED JOINT[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1988, (3): 134-140.
  • Cited by

    Periodical cited type(9)

    1. 胡一杰,孙有平,何江美,李旺珍. 轴肩压入量对2524铝合金FSSW接头组织性能的影响. 兵器材料科学与工程. 2020(01): 52-56 .
    2. 胡一杰,孙有平,何江美,李旺珍. 转速对2524铝合金搅拌摩擦点焊组织与性能的影响. 矿冶工程. 2020(02): 139-143 .
    3. 邱宇,孟强,栾国红,曾元松,李志强,张豪. 喷射成形7055铝合金薄板搅拌摩擦焊研究. 塑性工程学报. 2020(07): 117-122 .
    4. 金玉花,张林,张亮亮,王希靖. 7050铝合金搅拌摩擦焊接头的微观织构演变与力学性能. 材料导报. 2020(20): 20107-20111 .
    5. 金玉花,张林,张亮亮,王希靖. 7050铝合金FSW接头微区低周疲劳裂纹扩展行为. 焊接学报. 2020(10): 11-16+97-98 . 本站查看
    6. 金玉花,吴永武,王希靖,郭廷彪. 滚动轧制对铝合金搅拌摩擦焊接头性能的影响. 焊接学报. 2019(04): 50-54+163 . 本站查看
    7. 霍仁杰,金玉花,王宁,王广山,周彦林. 自然时效对2024铝合金搅拌摩擦焊接头拉伸性能和显微硬度的影响. 热加工工艺. 2019(15): 154-157 .
    8. 李萍,张凯,王薄笑天,薛克敏. 7A60铝合金搅拌摩擦加工组织及性能. 上海交通大学学报. 2019(11): 1381-1388 .
    9. 任思蒙,高崇,李书磊,李超,赵丕植. 焊接速度对厚板5083铝合金搅拌摩擦焊接头组织与性能的影响. 电焊机. 2018(08): 104-108 .

    Other cited types(9)

Catalog

    Article views (309) PDF downloads (50) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return