Advanced Search
GUO Shun, WANG Pengkun, GU Jieren, PENG Yong, XU Junqiang, ZHOU Qi. Microstructure and mechanical properties of Ti6Al4V/B4C composite prepared by arc melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 62-68. DOI: 10.12073/j.hjxb.20220403002
Citation: GUO Shun, WANG Pengkun, GU Jieren, PENG Yong, XU Junqiang, ZHOU Qi. Microstructure and mechanical properties of Ti6Al4V/B4C composite prepared by arc melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 62-68. DOI: 10.12073/j.hjxb.20220403002

Microstructure and mechanical properties of Ti6Al4V/B4C composite prepared by arc melting

More Information
  • Received Date: April 02, 2022
  • Available Online: October 19, 2022
  • Ti6Al4V/B4C titanium matrix composites with different B4C contents were prepared by vacuum arc melting. The microstructure and mechanical properties were characterized and analyzed by optical microscope, scanning electron microscope, microhardness tester, static compression and tensile test. The results show that in the process of arc melting, B4C reacts with titanium matrix in situ to form TiB, TIC and TiB2 phases. TiB presents one-dimensional long whisker shape, TiC presents granular shape, and massive TiB2 is formed when the content of B4C is 10 wt.%, and a special hollow prismatic Ti (BxCy) polymer may be formed. TiB2 produced by in-situ reaction significantly improve the microhardness of titanium matrix composites. When the content of B4C is 0.5 wt.%, the continuous network and evenly distributed structure of TiB and TiC produced by the in-situ reaction of titanium matrix composites has the best mechanical properties. The maximum compressive strength of the sample reaches 1 990 MPa and the maximum compressive strain is 35.5%. The compressive property exceeds that of molten titanium alloy. The tensile strength reaches 1 034 MPa, which is nearly 24% higher than that of molten titanium alloy, but the plasticity decreases. With the increase of B4C content, the tensile strength decreases gradually, titanium matrix composites gradually change from ductile fracture to brittle fracture.
  • 朱强, 赵文涛, 雷玉成, 等. Ti 对 SiCp/6092 铝基复合材料激光焊焊缝组织和性能的影响[J]. 焊接学报, 2021, 42(3): 85 − 90. doi: 10.12073/j.hjxb.20201003002

    Zhu Qiang, Zhao Wentao, Lei Yucheng, et al. Effect of Ti on microstructure and properties of laser welding weld of SiC particle reinforced 6092 Al alloy matrix composite[J]. Transactions of the China Welding Institution, 2021, 42(3): 85 − 90. doi: 10.12073/j.hjxb.20201003002
    李鹏, 廉润康, 马超群, 等. 加工道次对 FSP 制备高熵合金增强铝基复合材料组织和性能的影响[J]. 焊接学报, 2022, 43(6): 11 − 19. doi: 10.12073/j.hjxb

    Li Peng, Lian Runkang, Ma Chaoqun, et al. Effect of processing pass on the microstructure and properties of high entropy alloy reinforced aluminum matrix composites via FSP[J]. Transactions of the China Welding Institution, 2022, 43(6): 11 − 19. doi: 10.12073/j.hjxb
    Xiong Y, Du M, Zhang F, et al. Preparation and mechanical properties of titanium alloy matrix composites reinforced by Ti3AlC and TiC ceramic particulates[J]. Journal of Alloys and Compounds, 2021, 886: 161216. doi: 10.1016/j.jallcom.2021.161216
    Wang J, Zhao Y, Zhou W, et al. In-situ study on tensile deformation and damage evolution of metastable β titanium alloy with lamellar microstructure[J]. Materials Science and Engineering: A, 2021, 824: 141790.
    王亮亮, 樊少忠, 付永红, 等. 铁基表面碳化钛致密陶瓷层的组织性能与增韧机制[J]. 焊接学报, 2018, 39(5): 121 − 124.

    Wang Liangliang, Fan Shaozhong, Fu Yonghong, et al. In situ TiC dense particles layer tissue properties and toughening mechanism on gray cast iron surface[J]. Transactions of the China Welding Institution, 2018, 39(5): 121 − 124.
    Pan Y, Li W, Lu X, et al. Microstructure and tribological properties of titanium matrix composites reinforced with in situ synthesized TiC particles[J]. Materials Characterization, 2020, 170: 110633. doi: 10.1016/j.matchar.2020.110633
    Wang D, Li H, Zheng W. Oxidation behaviors of TA15 titanium alloy and TiBw reinforced TA15 matrix composites prepared by spark plasma sintering[J]. Journal of Materials Science & Technology, 2020, 37: 46 − 54.
    Tijo D, Masanta M. Effect of Ti/B4C ratio on the microstructure and mechanical characteristics of TIG cladded TiC-TiB2 coating on Ti6Al4V alloy[J]. Journal of Materials Processing Technology, 2019, 266: 184 − 197. doi: 10.1016/j.jmatprotec.2018.11.005
    卢海滨, 杨文超, 湛永钟, 等. 原位合成TiBw/Ti-10MO新型低弹高强钛基复合材料[J]. 低碳世界, 2019, 9(3): 288 − 289. doi: 10.3969/j.issn.2095-2066.2019.03.175

    Lu Haibin, Yang Wenchao, Zhan Yongzhong, et al. In-situ synthesis of TiBw/Ti-10MO new low-elasticity high-strength titanium matrix composite[J]. Low Carbon World, 2019, 9(3): 288 − 289. doi: 10.3969/j.issn.2095-2066.2019.03.175
    Geng K, Lu W, Yang Z, et al. In situ preparation of titanium matrix composites reinforced by TiB and Nd2O3[J]. Materials Letters, 2003, 57(24-25): 4054 − 4057. doi: 10.1016/S0167-577X(03)00264-7
    Li S, Han Y, Shi Z, et al. Synergistic strengthening behavior and microstructural optimization of hybrid reinforced titanium matrix composites during thermomechanical processing[J]. Materials Characterization, 2020, 168: 110527. doi: 10.1016/j.matchar.2020.110527
    Han C, Babicheva R, Chua J D Q, et al. Microstructure and mechanical properties of (TiB + TiC)/Ti composites fabricated in situ via selective laser melting of Ti and B4C powders[J]. Additive Manufacturing, 2020, 36: 101466. doi: 10.1016/j.addma.2020.101466
    Koo M Y, Park J S, Park M K, et al. Effect of aspect ratios of in situ formed TiB whiskers on the mechanical properties of TiBw/Ti6Al4V composites[J]. Scripta Materialia, 2012, 66(7): 487 − 490. doi: 10.1016/j.scriptamat.2011.12.024
    黄陆军, 耿林, 彭华新. 钛合金与钛基复合材料第二相强韧化[J]. 中国材料进展, 2019, 38(3): 214 − 222. doi: 10.7502/j.issn.1674-3962.2019.03.03

    Huang Lujun, Geng Lin, Peng Huaxin. Strengthening and toughening mechanisms of the second phase in titanium alloys and titanium matrix composites[J]. Materials China, 2019, 38(3): 214 − 222. doi: 10.7502/j.issn.1674-3962.2019.03.03
    吕维洁, 郭相龙, 王立强, 等. 原位自生非连续增强钛基复合材料的研究进展[J]. 航空材料学报, 2014, 34(4): 139 − 146. doi: 10.11868/j.issn.1005-5053.2014.4.014

    Lü Weijie, Guo Xianglong, Wang Liqiang, et al. Progress on in-situ discontinuously reinforced titanium matrix composites[J]. Journal of Aeronautical Materials, 2014, 34(4): 139 − 146. doi: 10.11868/j.issn.1005-5053.2014.4.014
    Tang M, Zhang L, Zhang N. Microstructural evolution, mechanical and tribological properties of TiC/Ti6Al4V composites with unique microstructure prepared by SLM[J]. Materials Science and Engineering: A, 2021, 814: 141187. doi: 10.1016/j.msea.2021.141187
  • Related Articles

    [1]LIU Pengyu, LI Hui, ZHANG Ruihua, XIAO Mengzhi, QU Yuebo, WEI Xiaohong, YIN Yan. Research on the properties of Ti6Al4V parts prepared by selective laser melting under different galvanometer accuracy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 52-61. DOI: 10.12073/j.hjxb.20230616003
    [2]YAO Xingzhong, LI Huijun, YANG Zhenwen, WANG Ying. Tailoring the microstructure and mechanical properties of wire arc additive manufactured Ti-6Al-4V alloy by trace TiC powder addition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(6): 12-19. DOI: 10.12073/j.hjxb.20230422001
    [3]Jipeng ZOU, Jian CHEN, Ruisheng HUANG, Pengbo WU, Bin TENG, Hao CAO. Microstructure and mechanical properties of thick Ti6Al4V alloy welded joint by low vacuum laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 54-60. DOI: 10.12073/j.hjxb.20220114002
    [4]LIU Huijie, GAO Yisong, ZHANG Quansheng, ZHAO Huihui. Microstructure and mechanical properties of friction stir welded joint of 2A14-T4 aluminum alloy thick plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 20-24, 42. DOI: 10.12073/j.hjxb.20210615001
    [5]TAO Yong, WANG Rui, SONG Kuijing, LIU Dashuang, ZHONG Zhihong, WU Yucheng. Interfacial microstructure and mechanical properties of B4C matrix composite joints diffusion bonded with Ti interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 29-35. DOI: 10.12073/j.hjxb.20210802001
    [6]XU Guojian, LIU Jin, CHEN Dongsa, MA Ruixin, SU Yunhai. Effect of normalizing temperature on microstructure and properties of Ti-6Al-4V fabricated by arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 39-43. DOI: 10.12073/j.hjxb.20191022002
    [7]LIN Panpan, LIN Tiesong, HE Peng, WANG Maochang, YANG Hangao. Microstructure and mechanical property of Al2O3/Ti joint with biocompatibility[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 16-23. DOI: 10.12073/j.hjxb.2019400175
    [8]FENG Zhenwei, GAO Tengfei, SHAO Tianwei, GUO Wei, ZHU Ying, QU Ping. Brazing of C/C composite and Ni-based high temperature alloy GH3128[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(12): 105-108.
    [9]QIAO Jisen, YU Jiangrui, GOU Ningnian, YUAN Xiaoer. Development of microstructure influence on mechanical properties of fusion welding joints of aluminium alloy 2A12[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (9): 5-8.
    [10]YANG Yang, CHEN Zhongping, LI Dahe, LIU Xiaohui. Microstructure and mechanical properties of Monel alloy copper explosive clad interface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (8): 53-56.
  • Cited by

    Periodical cited type(9)

    1. 胡一杰,孙有平,何江美,李旺珍. 轴肩压入量对2524铝合金FSSW接头组织性能的影响. 兵器材料科学与工程. 2020(01): 52-56 .
    2. 胡一杰,孙有平,何江美,李旺珍. 转速对2524铝合金搅拌摩擦点焊组织与性能的影响. 矿冶工程. 2020(02): 139-143 .
    3. 邱宇,孟强,栾国红,曾元松,李志强,张豪. 喷射成形7055铝合金薄板搅拌摩擦焊研究. 塑性工程学报. 2020(07): 117-122 .
    4. 金玉花,张林,张亮亮,王希靖. 7050铝合金搅拌摩擦焊接头的微观织构演变与力学性能. 材料导报. 2020(20): 20107-20111 .
    5. 金玉花,张林,张亮亮,王希靖. 7050铝合金FSW接头微区低周疲劳裂纹扩展行为. 焊接学报. 2020(10): 11-16+97-98 . 本站查看
    6. 金玉花,吴永武,王希靖,郭廷彪. 滚动轧制对铝合金搅拌摩擦焊接头性能的影响. 焊接学报. 2019(04): 50-54+163 . 本站查看
    7. 霍仁杰,金玉花,王宁,王广山,周彦林. 自然时效对2024铝合金搅拌摩擦焊接头拉伸性能和显微硬度的影响. 热加工工艺. 2019(15): 154-157 .
    8. 李萍,张凯,王薄笑天,薛克敏. 7A60铝合金搅拌摩擦加工组织及性能. 上海交通大学学报. 2019(11): 1381-1388 .
    9. 任思蒙,高崇,李书磊,李超,赵丕植. 焊接速度对厚板5083铝合金搅拌摩擦焊接头组织与性能的影响. 电焊机. 2018(08): 104-108 .

    Other cited types(9)

Catalog

    Article views (282) PDF downloads (38) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return