Advanced Search
GAO Shanshan, DI Xinjie, LI Chengning, JIANG Yuanbo, LI Weiwei, JI Lingkang. Effect of strain aging on fracture toughness of welded joints of high-strain pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 22-28. DOI: 10.12073/j.hjxb.20210328001
Citation: GAO Shanshan, DI Xinjie, LI Chengning, JIANG Yuanbo, LI Weiwei, JI Lingkang. Effect of strain aging on fracture toughness of welded joints of high-strain pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 22-28. DOI: 10.12073/j.hjxb.20210328001

Effect of strain aging on fracture toughness of welded joints of high-strain pipeline steel

More Information
  • Received Date: March 27, 2021
  • Available Online: November 15, 2021
  • In order to explore the effect of strain aging on welded joints of high strain pipeline steel, the microstructure and mechanical properties of welded joints of high strain pipeline steel before/after strain aging were studied. The mechanical properties of welded joints before/after strain aging were investigated by hardness test, fracture toughness test and digital image correlation (DIC) strain test. The microstructure and substructure characteristics of welded joints were analyzed based on optical microscope (OM), scanning electron microscope (SEM), electron back-scattered diffraction (EBSD) technology and X-ray diffraction technology. The results indicated that the microstructure of welded joint does not change obviously after strain aging, but the inside micro-defects increase. Meanwhile, the fracture toughness of welded joints decreases, and the decrease amplitude increases with the pre-strain degree. It was found that the increase of dislocation density, strain concentration as well as the geometrically necessary dislocation (GND) density are key factors leading to the decrease of plastic deformability and the deterioration of fracture toughness of welded joints.
  • Han B, Wang Z Y, Zhao H L, et al. Strain-based design for buried pipelines subjected to landslides[J]. Petroleum Science, 2012, 9(2): 236 − 241. doi: 10.1007/s12182-012-0204-y
    Zuo X R, Li R T. Research of strain aging in pipeline steel with a ferrite/martensite dual-phase microstructure[J]. Steel Research International, 2015, 86(2): 163 − 168. doi: 10.1002/srin.201300465
    Deng W, Gao X H, Qin X M, et al. Microstructure and properties of an X80 pipeline steel manufactured by untraditional TMCP[J]. Journal of Computational and Theoretical Nanoence, 2011, 4(3): 1088 − 1092.
    Zuo X R, Zhou Z Y. Study of pipeline steels with acicular ferrite microstructure and ferrite-bainite dual-phase microstructure[J]. Materials Research, 2015, 18(1): 36 − 41. doi: 10.1590/1516-1439.256813
    Yan C Y, Jiang X Y, Yuan Y, et al. Cold cracking susceptibility of X100 pipeline steel[J]. China Welding, 2019, 28(3): 25 − 33.
    Zhao W G, Chen M, Chen S H, et al. Static strain aging behavior of an X100 pipeline steel[J]. Materials Science and Engineering:A, 2012, 550: 418 − 422. doi: 10.1016/j.msea.2012.04.095
    姜永文, 牛涛, 安成钢, 等. X70管线钢的应变时效行为[J]. 材料研究学报, 2016, 30(10): 767 − 772.

    Jiang Yongwen, Niu Tao, An Chenggang, et al. Strain aging behavior of X70 pipeline steel[J]. Chinese Journal of Materials Research, 2016, 30(10): 767 − 772.
    Ungár T. Dislocation densities, arrangements and character from X-ray diffraction experiments[J]. Materials Science and Engineering A, 2001, 309(7): 14 − 22.
    贾璐, 刘意春, 贾书君, 等. 抗大变形管线钢热影响区软化问题的研究[J]. 材料科学与工艺, 2018, 26(3): 37 − 44. doi: 10.11951/j.issn.1005-0299.20170130

    Jia Lu, Liu Yichun, Jia Shujun, et al. Softening of heat affected zone of high-strain pipeline steel[J]. Materials Science and Technology, 2018, 26(3): 37 − 44. doi: 10.11951/j.issn.1005-0299.20170130
    Di X J, Tong M, Li C N, et al. Microstructural evolution and its influence on toughness in simulated inter-critical heat affected zone of large thickness bainitic steel[J]. Materials Science and Engineering:A, 2019, 743: 67 − 76. doi: 10.1016/j.msea.2018.11.070
    Yang X C, Di X J, Liu X G, et al. Effects of heat input on microstructure and fracture toughness of simulated coarse-grained heat affected zone for HSLA steels[J]. Materials Characterization, 2019, 155: 109818. doi: 10.1016/j.matchar.2019.109818
    Wu Q, Zikry M A. Dynamic fracture predictions of microstructural mechanisms and characteristics in martensitic steels[J]. Engineering Fracture Mechanics, 2015, 145: 54 − 66. doi: 10.1016/j.engfracmech.2015.06.002
    王东坡, 刘恺悦, 邓彩艳, 等. 焊后热处理对拘束焊焊缝金属冲击韧性与断裂韧性的影响[J]. 焊接学报, 2020, 41(8): 63 − 67,78. doi: 10.12073/j.hjxb.20190914001

    Wang Dongpo, Liu Kaiyue, Deng Caiyan, et al. Effect of post-weld heat treatment on impact toughness and fracture toughness of restrained weld metal[J]. Transactions of the China Welding Institution, 2020, 41(8): 63 − 67,78. doi: 10.12073/j.hjxb.20190914001
    Calcagnotto M, Ponge D, Demir E, et al. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD[J]. Materials Science and Engineering:A, 2010, 527(10-11): 2738 − 2746. doi: 10.1016/j.msea.2010.01.004
    Lambert-Perlade A, Sturel T, Gourgues A F, et al. Mechanisms and modeling of cleavage fracture in simulated heat-affected zone microstructures of a high-strength low alloy steel[J]. Metallurgical and Matreals Transactions A, 2004, 3(35): 1039 − 1053.
  • Related Articles

    [1]MA Jianguo, TAO Jia, LIU Zhihong, WU Jiefeng, LIU Zhenfei, DENG Haoxiang, WANG Zhiyong. Effect of annealing temperature on microstructure and mechanical properties of 50 mm thickness 316L electron beam welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 72-78. DOI: 10.12073/j.hjxb.20211202004
    [2]WANG Dongpo, LIU Kaiyue, DENG Caiyan, GONG Baoming, WU Shipin, XIAO Na. Effects of PWHT on the impact toughness and fracture toughness of the weld metal under restraint welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(8): 63-67, 78. DOI: 10.12073/j.hjxb.20190914001
    [3]LIU Chang, DENG Caiyan, WANG Sheng, GONG Baoming. Critical fracture toughness of weld metal structure in submerged arc welding of EH36 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 107-110. DOI: 10.12073/j.hjxb.2019400081
    [4]XU Jie, LI Pengpeng, FAN Yu, SUN Zhi. Effect of temperature on fracture toughness in weld thermal simulated X80 pipeline steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(1): 22-26.
    [5]WEN Zhigang, JIN Weiliang, ZHANG Jianli, DENG Caiyan. Influence of post weld heat treatment on fracture toughness of DH36 steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (3): 89-92.
    [6]MA Caixia, ZHANG Se, HUANG Xusheng, LIN Chengxiao, MA Fubao, YANG Siqian. Fracture toughness of square drill pipe joint by narrow gap welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (4): 77-80.
    [7]Zhou Zhiliang, Liu Shuhua. Effect of PWHT on Fracture Toughness of HAZ in a DQTHT80 Steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1998, (1): 39-43.
    [8]Fan Ruixiang, Tian Xitang, Zhu Hongguan. Fracture toughness of welded joints with crack in transverse hard layer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1993, (1): 12-15.
    [9]Jiao Fujie, Mao Peng, Shen Yushu. Investigation of mechanism of vibration ageing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1992, (3): 169-174.
    [10]Wang Zhihui, Xu Biyu, Ye Ciqi. A STUDY OF THE FRACTURE TOUGHNESS OF THE MARTENSITE LAYER IN AUSTENITIC-FERRITIC DISSIMILAR METAL JOINTS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1989, (2): 95-103.
  • Cited by

    Periodical cited type(6)

    1. 冯玉兰,吴志生,孙智宇. 覆材厚度对不锈钢复合板焊接接头应力应变影响的数值模拟分析. 焊接学报. 2024(01): 73-82+133-134 . 本站查看
    2. 吴雁,叶佳庆,孙国锋,李朝阳,刘旭辉. 异质铝合金激光深熔焊热固耦合数值模拟研究. 应用激光. 2024(08): 18-25 .
    3. 邵贞先,李天庆,吴艺鹏,彭思维,房俊杰. SY35平台MAG焊接变形模拟分析和调控. 焊接. 2023(10): 1-5+12 .
    4. 苗玉刚,王林,王子然,卓振坚,林春香,谭国平,谢祖靠. DH36高强度船板钢对接焊残余应力与变形数值模拟与试验分析. 武汉理工大学学报. 2023(10): 104-111 .
    5. 李建辉. 建筑工程大型钢结构焊接变形控制技术. 安装. 2023(11): 51-54 .
    6. 余辉,胡水莲,张维维,白鹏飞,段虹匡. 飞机后整流罩用3A21F铝合金的GTAW工艺研究. 轻合金加工技术. 2023(11): 51-56 .

    Other cited types(0)

Catalog

    Article views (417) PDF downloads (41) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return