Advanced Search
JING Hongyang, LI Shibo, XU Lianyong, ZHAO Lei. Experimental study on high temperature fracture toughness of P92 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 8-12. DOI: 10.12073/j.hjxb.2019400033
Citation: JING Hongyang, LI Shibo, XU Lianyong, ZHAO Lei. Experimental study on high temperature fracture toughness of P92 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 8-12. DOI: 10.12073/j.hjxb.2019400033

Experimental study on high temperature fracture toughness of P92 steel

More Information
  • Received Date: October 23, 2017
  • In this paper, a new type of heat-resistant steel, P92 was used as the research object, and the fracture toughness at 630 °C high temperature was studied by using different kinds size of side-grooved and plain-sided of compact tension(CT) specimens. The resistance curves and the corresponding fracture toughness JQ of the specimens under different forms were obtained. Through the analysis of fracture morphology, the fracture toughness of P92 steel at high temperature is good, which is a typical ductile fracture mechanism. Based on the three-dimensional finite element calculation, the influence of the side-groove on the constraint of the specimen was characterized by constraint parameter Tz and Q, through which the effect of the constraint on the experimental results was discussed. Research shows that, side-groove can significantly increase the constraint level of the specimen, and the smaller the size of the specimen, the more obvious the effect of the side-groove, so the smaller the size of the specimen, the more obvious the difference between the J resistance curve; with the increase of load, plain-sided specimen's constraint change is more obvious, so side-groove structure will lead to different resistance curve; the change of the size or structure of specimens has a great influence on the resistance curve of the ductile material, but the effect on the fracture toughness value is small. After the side-grooved, the crack propagation is more uniform and the fracture toughness test process can be optimized.
  • Guan Pengtao, Li Xiangqing, Zheng Sanlong, et al. Study and comparison of test method for measurement of fracture toughness between ASTM and ISO standards[J]. Journal of Mechanical Engineering, 2017, 53(6): 60 − 67
    Bergant M A, Yawny A A, Ipiña J E P. J-resistance curves for Inconel 690 and Incoloy 800 nuclear steam generators tubes at room temperature and at 300 °C[J]. Journal of Nuclear Materials, 2017, 486: 298 − 307.
    Cockeram B V. The mechanical properties and fracture mechanisms of wrought low carbon arc cast (LCAC), molybdenum-0.1pct zirconium (TZM), and oxide dispersion strengthened (ODS) molybdenum flat products[J]. Materials Science & Engineering A, 2006, 418(1): 120 − 136.
    Harimon M A, Hidayati N A, Miyashita Y, et al. High temperature fracture toughness of TZM alloys with different kinds of grain boundary particles[J]. International Journal of Refractory Metals & Hard Materials, 2017, 66: 52 − 56.
    American Society for Testing and Material. Standard test methods for measurement of fracture toughness:ASTM E1820-11[S]. Philadelphia: ASTM, 2011.
    International Organization for Standardization. Metallic materials-Unified method of test for the determination of quasistatic fracture toughness:ISO 12135-2002[S]. Geneva: ISO, 2002.
    O'Dowd N P, Shih C F. Family of crack-tip fields characterized by a triaxiality parameter-I. Structure of fields[J]. Journal of the Mechanics & Physics of Solids, 1991, 39(8): 989 − 1015.
    Guo W. Elastoplastic three dimensional crack border field-I. Singular structure of the field[J]. Engineering Fracture Mechanics, 1993, 46(1): 93 − 104.
    Tkach Y, Burdekin F M. A three-dimensional analysis of fracture mechanics test pieces of different geometries-Part 1 Stress-state ahead of the crack tip[J]. International Journal of Pressure Vessels & Piping, 2012, s 93-94(5): 42 − 50.
    Shen Y, Shang Z, Xu Z, et al. The nature of nano-sized precipitates in ferritic/martensitic steel P92 produced by thermomechanical treatment[J]. Materials Characterization, 2016, 119: 13 − 23.
    Khayatzadeh S, Tanner D W J, Truman C E, et al. Creep deformation and stress relaxation of a martensitic P92 steel at 650 °C[J]. Engineering Fracture Mechanics, 2017, 175: 57 − 71.
    Zhao L, Jing H, Xu L, et al. Investigation on mechanism of type IV cracking in P92 steel at 650 °C[J]. Journal of Materials Research, 2011, 26(7): 934 − 943.
    关鹏涛, 李相清, 郑三龙, 等. ASTM和ISO标准断裂韧度测试方法比较研究[J]. 机械工程学报, 2017, 53(6): 60 − 67
    Joyce J A, Link R E. Effects of constraint on upper shelf fracture toughness[J]. Astm Special Technical Publication, 1995, 26: 142 − 177.
  • Related Articles

    [1]XIA Congcong, ZHAO Yangyang, DAI Lianshuang, GONG Baoming, DENG Caiyan, WANG Dongpo. Research on the constraint of SE(T) specimen based on crack tip plastic zone parameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 1-7. DOI: 10.12073/j.hjxb.20220718003
    [2]WANG Chenxi, TANG Wencheng. Numerical simulation of flange welding deformation based on dynamic constraint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 67-73. DOI: 10.12073/j.hjxb.20200716003
    [3]HAN Yongdian, LI Zhan, XU Lianyong, JING Hongyang, ZHAO Lei. Constraint effect of corrosion fatigue crack growth behavior in S690 high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(12): 13-18. DOI: 10.12073/j.hjxb.2018390290
    [4]FENG Bao<sup>1,2</sup>, QIN Ke<sup>1,2</sup>, JIANG Zhiyong<sup>1</sup>. ELM with L1/L2 regularization constraints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(9): 31-35. DOI: 10.12073/j.hjxb.2018390219
    [5]DENG Caiyan, SONG Mengmeng, GONG Baoming, WANG Dongpo. Effect of specimen thickness on the shift of the ductile-to-brittle transition curve[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 1-4. DOI: 10.12073/j.hjxb.2018390110
    [6]JIA Pengyu1,2, JING Hongyang1, XU Lianyong1, WEI Chen2. Construction of J-R curve for X80 steel based on constraint level[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 31-35. DOI: 10.12073/j.hjxb.2018390090
    [7]XIAO Xiaoming, PENG Yun, ZHANG Jianxun, PEI Yi, TIAN Zhiling. Investigation of out-of-plane welding distortion in aluminum alloy welding with external restraint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (5): 33-36.
    [8]Na Jingxin, Ren Zhenan, Zhenfeng. Calculating Restraint Intensity of Restraint Specimen of Cast Iron and Evaluating Quantitatively Cold Cracking Tendency of Cast Iron Weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (4): 196-201.
    [9]Hou Wenkao, Chen Banggu, Zhang Wenyue. Analyse on restraint stress of welded joint in slit-type cracking specimens[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1994, (1): 59-66.
    [10]Chen Banggu, Qin Boxiong, Wang Luqiang. Study on distribution of restraint intensity and restraint stress in slit weld specimen[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1992, (3): 162-168.
  • Cited by

    Periodical cited type(15)

    1. 曹新娜,宋路阳,黄玲玲,江涛,张浩强,汪瑞军,于华,詹华,尹丹青,鲍曼雨,龙伟民,钟素娟,纠永涛. 60Si2Mn钢表面激光熔覆铁基涂层的组织及耐磨性研究. 表面技术. 2024(07): 164-170 .
    2. 郭亿,王金凤,苏文超,车亚军,蔡笑宇,柯浩,李文娟. 电弧熔覆韧-硬复合层工艺及性能研究. 精密成形工程. 2024(06): 107-114 .
    3. 吴鹏飞,魏昕,苏建修. 碳化钨对Fe基合金激光熔覆层性能的影响. 热加工工艺. 2024(14): 11-15 .
    4. 宗琳,徐俊尧,王学钊,周建,杨洋,王明. 等离子弧堆焊高铬铁基合金的组织形成机制及对显微硬度的影响. 焊接技术. 2023(01): 17-21+113 .
    5. 黄江,朱志凯,李凯玥,师文庆,吴香林,谢玉萍. 304不锈钢表面激光熔覆铁基复合涂层的组织与性能研究. 应用激光. 2023(06): 29-35 .
    6. 张志彬,舒凤远,王慧鹏,朱鹏华. 不同B含量下钴基合金激光熔覆层组织与性能特征. 锻压技术. 2022(09): 218-223 .
    7. 王永霞,丁国华,梁莉蒙. 送粉速率对铁基合金激光熔覆层组织形貌的影响. 应用激光. 2022(12): 38-44 .
    8. 王聪,毛从强,王冬春,贾丽荣,栾程群,隋江雷. 激光熔覆Fe-Cr-Co-W合金系熔覆层硬质相的微观形貌与摩擦行为. 焊接. 2022(11): 29-34 .
    9. 胡登文,刘艳,陈辉,王梦超. Q960E钢激光熔覆Ni基WC涂层组织及性能. 中国激光. 2021(06): 239-245 .
    10. 柯庆镝,姜丰,张鹏,田常俊,秦小州. 基于修复涂层力学性能影响规律的再制造毛坯表面污染物状态评估. 中国机械工程. 2021(19): 2340-2347+2356 .
    11. 刘涛,田芳,唐秋逸. 激光熔覆大厚度铁基非晶合金的电化学腐蚀特性研究. 绿色环保建材. 2020(02): 26-27 .
    12. 秦建,龙伟民,路全彬,李胜男,黄俊兰. 金刚石/NiCrBSi钎涂接头组织与耐磨性能分析. 材料导报. 2020(S2): 1457-1461 .
    13. 姚志超,李正秋,高向宙,马春春. 基于热力学计算的矿井支架用FeNiCrBC系激光熔覆层成分优化. 焊接. 2020(11): 11-16+36+61-62 .
    14. 张金深,李辉,武爱兵. 煤化工设备耐磨层堆焊材料及工艺. 机械制造文摘(焊接分册). 2020(06): 13-18 .
    15. 秦建,黄俊兰,龙伟民,于德庆,吴铭方,王裕昌. Evolution behavior of phase and performance in Ni-based coating layer based on high temperature thermal field. China Welding. 2020(04): 25-32 .

    Other cited types(2)

Catalog

    Article views (163) PDF downloads (19) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return