Citation: | YAN Wenqing1, LIU Sheng1, LI Huhu1, GUI Chibin2. Analysis of phase stability for Ti3SiC2-TiSi2-TiB2 deposition composites during argon annealing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 79-82. DOI: 10.12073/j.hjxb.2018390073 |
Murthy T S R Ch, Basu B, Balasubramaniam R,et al. Processing and properties of TiB2with MoSi2sinter-additive: A first report[J]. Journal of American and Ceramic Society, 2006, 89(1): 131-138.[2] Brahma Raju G, Bikramjit B. Densification, sintering reactions, and properties of titanium diboride with titanium disilicide as a sintering aid[J]. Journal of American and Ceramic Society, 2007, 90(11): 3415-3423.[3] Barsoum M W. The MN+1AXNphases: a new class of solids: thermodynamically stable nanolaminates[J]. Progress in Solid State Chemistry, 2000, 28: 201-281.[4] Emmerlich J, Music D, Eklund P,et al. Thermal stability of Ti3SiC2thin films[J]. Acta Materialia, 2007, 55: 1479-1488.[5] Sun Z M, Zhou Y C, Zhou J. The anomalous flow behavior in the layered Ti3SiC2ceramic[J]. Philosophical Magazine Letters, 2000, 80(5): 289-294.[6] 王东生, 田宗军, 王泾文, 等. 激光多层熔敷制备厚陶瓷涂层[J]. 焊接学报, 2012, 33(5): 57-60.Wang Dongsheng, Tian Zongjun, Wang Jingwen,et al. Experimental on preparation of thick ceramic coating by laser multi-layer cladding[J]. Transactions of the China Welding Institution, 2012, 33(5): 57-60.[7] 乔 虹, 李庆棠, 符寒光. 激光熔覆原位合成陶瓷相增强铁基熔覆层的组织和性能[J]. 焊接学报, 2015, 36(1): 67-69.Qiao Hong, Li Qingtang, Fu Hanguang,et al. Microstructure and properties of in-situ synthesized ceramic phase reinforced Fe-based coating by laser cladding[J]. Transactions of the China Welding Institution, 2015, 36(1): 67-69.[8] 任振安, 赵继圆, 范 珺, 等. 电弧熔覆Ti-Si金属间化合物表面层的组织与性能[J]. 焊接学报, 2008, 29(11): 1-4.Ren Zhenan, Zhao Jiyuan, Fan Jun,et al. Microstructures and properties of Ti-Si intermetallic compound layers by arc cladding[J]. Transactions of the China Welding Institution, 2008, 29(11): 1-4.[9] Lis J, Miyamoto Y, Pampuch R,et al. Ti3SiC2-based materials prepared by HIP-SHS techniques[J]. Materials Letters, 1995, 22: 163-168.[10] Racault C, Langlais F, Naslain R. Solid-state synthesis and characterization of the ternary phase Ti3SiC2[J]. Journal of Materials Science, 1994, 29(15): 3384-3392.[11] Okano T, Yano T, Iseki T. Synthesis and mechanical properties of Ti3SiC2ceramic[J]. Advanced Materials, 1994, 14: 597-600.[12] El-Raghy T, Barsoum M W. Processing and mechanical properties of Ti3SiC2:Ⅰ reaction path and microstructure evolution[J]. Journal of the European Ceramics Society, 1999, 82: 2849-2854.
|
[1] | ZHANG Min, ZHANG Wenhui, XIAO Jiming, DONG Yufan, CHU Qiaoling. Numerical simulation of welding residual stress and distortion in T2-Y/Q345 dissimilar materials[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 67-72. DOI: 10.12073/j.hjxb.20191106001 |
[2] | HUANG Shuang, YANG Xiaoyi, CHEN Hui, ZHU Zongtao, HUANG Ruisheng, LI Liqun. Analysis of deformation and stress of scanning laser wire filling welded 5A06 aluminum alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(2): 87-92. DOI: 10.12073/j.hjxb.20190220001 |
[3] | XU Hailaing, GUO Xingye, LEI Yongping, LIN Jian, XIAO Rongshi. Residual stress and deformation of ultra-thin 316 stainless steel plate using pulsed laser welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 50-54. DOI: 10.12073/j.hjxb.2019400208 |
[4] | HUANG Bensheng, CHEN Quan, YANG Jiang, LIU Ge, YI Hongyu. Numerical simulation of welding residual stress and distortion in Q345/316L dissimilar steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 138-144. DOI: 10.12073/j.hjxb.2019400057 |
[5] | LI Meiyan, HAN Bin, CAI Chunbo, WANG Yong, SONG Lixin. Numerical simulation on temperature and stress fields of laser cladded Ni-based coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(5): 25-28,32. |
[6] | MA Ziqi, LIU Xuesong, ZHANG Shiping, HUANG Haixia, FANG Hongyuan. Welding residual stress analysis of high-speed train undercarriage deformation by ultrasonic method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (5): 45-48. |
[7] | HOU Pingjun, WANG Hangong, WANG Liuying, YUAN Xiaojing. Numerical simulation on deposition process of duplex thermal barrier coating by plasma spraying[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 97-100,104. |
[8] | ZHOU Guangtao, LIU Xuesong, YANG Jianguo, YAN Dejun, FANG Hongyuan. Numerical simulation of welding residual stress for longitudinal straight weld seam for aluminum alloy thin-wall cylinder[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (6): 89-92. |
[9] | XU Ji-jin, CHEN Li-gong, NI Chun-zhen. Temperature distribution,deformation and residual stresses of thick plate butt multipass welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (5): 97-100. |
[10] | ZHU Yuan-xiang, ZHANG Xiao-fei, Yang bing, Li xiao-mei. The Numeric Simulation of Weld Residual Stress of Several Weld-Repaired Based on Finite Element[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (1): 65-68. |
1. |
庞嘉尧,程伟. 铝合金搅拌摩擦焊接头疲劳性能研究进展. 兵器材料科学与工程. 2025(01): 164-175 .
![]() | |
2. |
金玉花,邢逸初,周子正,吴博. 喷丸改性对7050铝合金FSW接头性能的影响. 材料导报. 2023(10): 169-173 .
![]() | |
3. |
王龙权,周海涛. 7xxx高强铝合金搅拌摩擦焊研究进展. 焊接. 2023(10): 47-54 .
![]() | |
4. |
周韶泽,郭硕,陈秉智,张军,兆文忠. 焊接结构超高周疲劳主S-N曲线拟合及寿命预测方法. 焊接学报. 2022(05): 76-82+118 .
![]() | |
5. |
米鹏,王瑞杰,杨庆鹤. 5083铝合金带吻接FSW接头疲劳强度分析. 机械科学与技术. 2021(03): 463-469 .
![]() | |
6. |
张龙,陈东高,张迎迎,戴宇,马良超,王大锋,郭庆虎,何逸凡. 7B52-T6叠层铝合金焊接接头组织及疲劳损伤行为. 兵器材料科学与工程. 2021(02): 126-130 .
![]() | |
7. |
王池权,石亮,张祥春,刘志毅,邵成伟. 焊接缺陷对异种铝合金TIG对接接头疲劳行为的影响. 北京航空航天大学学报. 2021(07): 1505-1514 .
![]() | |
8. |
韦旭,汪建利,汪洪峰. 5052铝合金搅拌摩擦焊接的组织和力学性能. 兵器材料科学与工程. 2020(04): 77-80 .
![]() | |
9. |
马青娜,邵飞,白林越,徐倩. 7075铝合金FSW接头腐蚀疲劳性能及断裂特征. 焊接学报. 2020(06): 72-77+101 .
![]() | |
10. |
杨立恒,刘建军,张建国,陈大兵,李成钢. 浅析母线伸缩节焊接接头质量. 焊接技术. 2020(S1): 156-160 .
![]() | |
11. |
张铁浩,杨志斌,张志毅,张海军,史春元. MIG焊叠加对6A01-T5铝合金FSW焊接头组织及性能的影响. 焊接学报. 2020(09): 81-88+96+101 .
![]() |