Citation: | ZHAO Dawei1, KANG Yuyun1, YI Rongtao2, LIANG Dongjie3. Research on process parameters optimization of laser welding for dual phase steel DP600[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 65-69. DOI: 10.12073/j.hjxb.2018390015 |
沈显峰, 黄文荣, 滕文华, 等. 辅助增强匙孔气流对激光焊接不锈钢组织和显微硬度的影响[J]. 焊接学报, 2013, 34(4): 19-22.Shen Xianfeng, Huang Wenrong, Teng Wenhua,et al. Effects of keyhole-assisted gas jet on microstructure and microhardness of stainless steel laser weld[J]. Transactions of the China Welding Institution, 2013, 34(4): 19-22.[2] 易荣涛, 赵大伟, 王元勋. 考虑相变影响的电阻点焊数字模拟[J]. 焊接学报, 2013, 34(10): 71-74.Yi Rongtao, Zhao Dawei, Wang Yuanxun. Numerical simulation of resistance spot welding considering phase transition effect[J]. Transactions of the China Welding Institution, 2013, 34(10): 71-74.[3] Rossinia M, Russo Spenaa P, Cortesea L,et al. Investigation on dissimilar laser welding of advanced high strength steel sheets for the automotive industry[J]. Materials Science and Engineering: A, 2015, 628(25): 288-296.[4] Reisgen U, Schleser M, Mokrov O,et al. Optimization of laser welding of DP/TRIP steel sheets using statistical approach[J]. Optics & Laser Technology, 2012, 44(1): 255-262.[5] Sathiya P, Panneerselvam K, Abdul Jaleel M Y. Optimization of laser welding process parameters for super austenitic stainless steel using artificial neural networks and genetic algorithm[J]. Materials & Design, 2012, 36(4): 490-498.[6] Olabi A G, Alsinani F O, Alabdulkarim A A,et al. Optimizing the CO2laser welding process for dissimilar materials[J]. Optics and Lasers in Engineering, 2013, 51(7): 832-839.[7] Patel C D. Experimental investigation and optimization of laser welding process parameters for mild steel[D]. Gujarat: Ganpat University, 2015.[8] Nakamura H, Kawahito Y, Nishimoto K,et al. Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium[J]. Journal of Laser Applications, 2015, 27(3): 1-10.[9] 杨东杰. 细管径侧吹气对激光焊接等离子体和熔池小孔影响的研究[D]. 上海: 上海交通大学, 2012.[10] 何正风, 张德丰, 周 品, 等. MATLAB概率与数理统计分析[M]. 北京: 机械工业出版社, 2012.[11] 罗 怡, 李春天, 周 银. 非等厚异种钢电阻点焊熔核成形的多元非线性回归模型[J]. 焊接学报, 2010, 31(11): 85-88.Luo Yi, Li Chuntian, Zhou Yin. Nonlinear multiple regression modeling of nugget formation for dissimilar steel welding with unequal thickness[J]. Transactions of the China Welding Institution, 2010, 31(11): 85-88.[12] Zhao D, Wang Y, Sheng S,et al. Multi-objective optimal design of small scale resistance spot welding process with principal component analysis and response surface methodology[J]. Journal of Intelligent Manufacturing, 2014, 25(6): 1335-1348.[13] Prrasad K S, Rao C S, Rao D N. Optimization of fusion zone grain size, hardness, and ultimate tensile strength of pulsed current micro plasma arc welded Inconel 625 sheets using genetic algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(9-12): 2287-2295.
|
[1] | YANG Xuexia, SUN Qinrun, ZHANG Weiwei. Structure optimization design of BGA solder joints based on surface response method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 36-41. DOI: 10.12073/j.hjxb.20220810002 |
[2] | GAO Chao, HUANG Chunyue, LIANG ying, LIU Shoufu, ZHANG Huaiquan. Analysis of stress and strain in BGA solder joints under power cyclic load[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 63-70. DOI: 10.12073/j.hjxb.20220811004 |
[3] | XING Xiaofang, BEN Qiang, ZHOU Yong, LU Hao, HAN Pei. Process optimization of projection welding of nut based on regression analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 91-96. DOI: 10.12073/j.hjxb.20200413004 |
[4] | HE Youyou, LIU Weijie, LI Qi. Multivariate nonlinear regression design of resistance spot welding for an advanced hot-formed steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(7): 75-78. |
[5] | TAO Bohao, LI Hong, SONG Yonglun, LI Qiang. Analysis of orthogonal test of properties of dual-phase DP600 steel resistance spot welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (6): 81-84. |
[6] | LU Lin, CHANG Yunlong, LI Yingmin, LU Ming, YANG Xu. Nonlinear multiple regression model of stainless steel tube magnetic control high-speed TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (6): 93-96. |
[7] | LU Qinghua, XU Jijin, CHEN Ligong, YU Zhishui. Regression analysis on maximum vibratory welding temperature at different parameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (11): 89-92. |
[8] | ZHAO Hongyun, YANG Xianqun, Shu Fengyuan, XU Chunhua, WU Jianqian. Comparative analysis on predictions of the geometric form of laser clading[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 51-54,59. |
[9] | ZHANG Zhong-dian, LI Dong-qing, YIN Xiao-hui. Study on Spot Welding Quality Monitoring Models by Linear Regression Theory[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (4): 31-35. |
[10] | Sun Lunqiang, Wu Lin. A Regression Model of Weld Bead Geometry for Pulsed MAG Welding in Multipositions[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1996, (4): 249-257. |
1. |
马晓阳,何亮,成应晋,王杏华,程彬,贺智涛. BP神经网络预测船用钢焊接接头力学性能研究. 金属制品. 2024(03): 59-63 .
![]() | |
2. |
黄伟波,赵晓宇. 选区激光熔化成形参数对熔池尺寸的影响. 肇庆学院学报. 2023(05): 65-73+79 .
![]() | |
3. |
马佳博,王成玥,陈峰. 加激光选区熔化成形技术的产品设计三维模型研究. 激光杂志. 2020(05): 134-138 .
![]() | |
4. |
吕小青,王旭,徐连勇,荆洪阳,韩永典. 基于组合模型的MAG焊工艺参数多目标优化. 焊接学报. 2020(02): 6-11+97 .
![]() | |
5. |
邢晓芳,贲强,周勇,路浩,韩佩. 基于回归分析的螺母凸焊工艺优化. 焊接学报. 2020(12): 91-96+102 .
![]() | |
6. |
常峰博,高亮,陈宇翔,佟志光,李铭钰,滕征泰. 正交法激光焊接双相钢工艺优化. 应用激光. 2020(06): 1061-1066 .
![]() |