Advanced Search
ZHAO Dawei1, LIANG Dongjie2, WANG Yuanxun3. Research on process parameters optimization of small scale resistance spot welding via regression analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 79-83. DOI: 10.12073/j.hjxb.2018390100
Citation: ZHAO Dawei1, LIANG Dongjie2, WANG Yuanxun3. Research on process parameters optimization of small scale resistance spot welding via regression analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 79-83. DOI: 10.12073/j.hjxb.2018390100

Research on process parameters optimization of small scale resistance spot welding via regression analysis

More Information
  • Received Date: October 08, 2016
  • Central composite experimental design was used for the thickness of 0.4 mm TC2 titanium alloy in order to optimize the small scale spot welded joint quality. The welding current, electrode force and welding time were picked out as the process parameters and the nugget size, peak load, tensile shear displacement and failure energy were weighted into a welding quality comprehensive index based on entropy measurement method. The mathematical model between the welding quality comprehensive index and process parameters was obtained using regression analysis. The interaction effects of the welding parameters on welding quality were explored. The optimal combination of welding process parameters was achieved by using hill climbing method. The results of validation experiments showed that this study could effectively forecast and optimize the welding quality for the TC2 titanium alloy with the thickness of 0.4 mm.
  • 孙晓屿, 黄 雷, 王武荣, 等. DP780双相钢电阻点焊的数值模拟及试验验证[J]. 焊接学报, 2016, 37(4): 85-88.Sun Xiaoyu, Huang Lei, Wang Wurong, et al. Numerical simulation and experimental verification of resistance spot welding with DP780 dual-phase steel[J]. Transactions of the China Welding Institution, 2016, 37(4): 85-88.[2] 姚 杞, 李 洋, 罗 震, 等. 永磁体磁场对铝合金电阻点焊力学性能及微观组织的影响[J]. 焊接学报, 2016, 37(4): 52-56.Yao Qi, Li Yang, Luo Zhen, et al. Impact of external magnetic field generated by permanent magnet on mechanical property and microstructure of aluminum alloy resistance spot weld[J]. Transactions of the China Welding Institution, 2016, 37(4): 52-56.[3] Pashazadeh H, Gheisari Y, Hamedi M. Statistical modeling and optimization of resistance spot welding process parameters using neural networks and multi-objective genetic algorithm[J]. Journal of Intelligent Manufacturing, 2016, 27(3): 549-559.[4] Muhammad N, Manurung Y H P, Jaafar R, et al. Model development for quality features of resistance spot welding using multi-objective Taguchi method and response surface methodology[J]. Journal of Intelligent Manufacturing, 2013, 24(6): 1175-1183.[5] Ashadudzzaman M, Choi I D, Kim J W, et al. Effect of initial welding current for adaptive control and its optimization to secure proper weld properties in resistance spot welding[J]. Journal of Welding and Joining, 2015, 33(6): 13-20.[6] Thakur A G, Nandedkar V M. Optimization of the resistance spot welding process of galvanized steel sheet using the Taguchi method[J]. Arabian Journal for Science and Engineering, 2014, 39(2): 1171-1176.[7] 林 健, 雷永平, 赵海燕, 等. 微连接接头在热疲劳过程中的破坏规律[J]. 焊接学报, 2009, 30(11): 65-68.Lin Jian, Lei Yongping, Zhao Haiyan, et al. Failure of soldered joint during thermal fatigue test[J]. Transactions of the China Welding Institution, 2009, 30(11): 65-68.[8] Fukumoto S, Fujiwara K,Toji S, et al. Small-scale resistance spot welding of austenitic stainless steels[J]. Materials Science and Engineering: A, 2008, 492(1): 243-249.[9] Chen F, Tong G Q, Ma Z, et al. The effects of welding parameters on the small scale resistance spot weldability of Ti-1Al-1Mn thin foils[J]. Materials & Design, 2016, 102: 174-185.[10] Chen Y C, Tseng K H, Cheng Y S. Electrode displacement and dynamic resistance during small-scale resistance spot welding[J]. Advanced Science Letters, 2012, 11(1): 72-79.[11] Banh Q N, Shiou F J. Determination of optimal small ball-burnishing parameters for both surface roughness and superficial hardness improvement of STAVAX[J]. Arabian Journal for Science and Engineering, 2016, 41(2): 639-652.
  • Cited by

    Periodical cited type(6)

    1. 黄伟波,赵晓宇. 选区激光熔化成形参数对熔池尺寸的影响. 肇庆学院学报. 2023(05): 65-73+79 .
    2. 王鹏,马蕊,魏永胜,李萍. TC4钛合金不同焊接方法焊接性及接头性能分析. 焊管. 2022(08): 17-23 .
    3. 邓新国,游纬豪,徐海威. 贝叶斯极限梯度提升机结合粒子群算法的电阻点焊参数预测. 电子与信息学报. 2021(04): 1042-1049 .
    4. 易润华,邓黎鹏,程东海,刘奋成. 基于多指标综合评分方差分析的镍铬合金储能缝焊工艺研究. 材料导报. 2021(14): 14161-14165 .
    5. 宋少东,王燕燕,舒林森,何雅娟. 基于NSGA-Ⅱ的Fe基合金激光熔覆工艺参数优化. 电焊机. 2021(12): 1-5+126 .
    6. 邢晓芳,贲强,周勇,路浩,韩佩. 基于回归分析的螺母凸焊工艺优化. 焊接学报. 2020(12): 91-96+102 . 本站查看

    Other cited types(7)

Catalog

    Article views (798) PDF downloads (3) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return