Advanced Search
HAO Tingting, LI Chengde, WANG Xu, ZHAI Yuchun, CHANG Yunlong. Effect of yttrium content on microstructure and properties of 2319 aluminum alloy fabricated by wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(7): 49-56. DOI: 10.12073/j.hjxb.20220416001
Citation: HAO Tingting, LI Chengde, WANG Xu, ZHAI Yuchun, CHANG Yunlong. Effect of yttrium content on microstructure and properties of 2319 aluminum alloy fabricated by wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(7): 49-56. DOI: 10.12073/j.hjxb.20220416001

Effect of yttrium content on microstructure and properties of 2319 aluminum alloy fabricated by wire arc additive manufacturing

More Information
  • Received Date: April 15, 2022
  • Available Online: July 28, 2022
  • The wire arc additive manufacturing technology (WAAM) based on cold metal transfer was used to prepare WAAM 2319 aluminum alloys by 2319 aluminum alloy wires with different yttrium (Y) content, and the effect of Y content on the microstructure and mechanical properties of WAAM 2139 alloy were investigated. The results show that the grain of as-deposited WAAM 2319 aluminum alloy is obviously refined after adding Y, which has the effects of fine grain strengthening and second phase strengthening, which affected the formation amount of the secondary precipitates θ' in the aging process indirectly. Meanwhile, the size and distribution of pore defects in WAAM 2319 aluminum alloy are not significantly affected with the addition of Y. With the increase of Y content, the degree of segregation of Y-containing compounds at the grain intersection during the solidification process of the alloy increases, which reduces the component undercooling, and resulting in the grain size of WAAM 2319 aluminum alloy decreases and then increases, the tensile strength and yield strength increase and then decrease, and the elongation decreases gradually. When the Y content reaches 0.15%, WAAM 2319 aluminum alloy reaches the optimal value of mechanical properties with tensile strength of 484 MPa, yield strength of 348 MPa and elongation of 10.5%.
  • Stewart S W, Martina F, Addison A C, et al. Wire + arc additive manufacturing[J]. Materials Science and Technology, 2016, 32(7): 641 − 647. doi: 10.1179/1743284715Y.0000000073
    夏玉峰, 张雪, 廖海龙, 等. 电弧熔丝增材制造钛/铝复合材料的组织与性能[J]. 焊接学报, 2021, 42(8): 18 − 24. doi: 10.12073/j.hjxb.20210422001

    Xia Yufeng, Zhang Xue, Liao Hailong, et al. Microstructure and properties of titanium/aluminum composites fabricated by wire arc additive manufacturing[J]. Transactions of The China Welding Institution, 2021, 42(8): 18 − 24. doi: 10.12073/j.hjxb.20210422001
    Zhao Pengkang, Fang Kui, Tang Cheng, et al. Effect of interlayer cooling time on the temperature field of 5356-TIG wire arc additive manufacturing[J]. China Welding, 2021, 30(2): 17 − 24.
    张帅锋, 吕逸帆, 魏正英, 等. 基于CMT的电弧熔丝增材Ti-6Al-3Nb-2Zr-1Mo合金的组织与性能[J]. 焊接学报, 2021, 42(2): 56 − 62. doi: 10.12073/j.hjxb.20200804003

    Zhang Shuaifeng, Lü Yifan, Wei Zhengying, et al. Microstructures and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy fabricated by CMT-wire arc additive manufacturing[J]. Transactions of The China Welding Institution, 2021, 42(2): 56 − 62. doi: 10.12073/j.hjxb.20200804003
    Gu Jianglong, Gao Minjie, Yang Shouliang, et al. Pore formation and evolution in wire  +  arc additively manufactured 2319 Al alloy[J]. Additive Manufacturing, 2019, 30: 100900. doi: 10.1016/j.addma.2019.100900
    Li Y, Yu S, Chen Y, et al. Wire and arc additive manufacturing of aluminum alloy lattice structure[J]. Journal of Manufacturing Processes, 2020, 50: 510 − 519. doi: 10.1016/j.jmapro.2019.12.049
    Fang X, Zhang L, Chen G, et al. Microstructure evolution of wire-arc additively manufactured 2319 aluminum alloy with interlayer hammering[J]. Materials Science and Engineering A, 2020, 800: 140 − 168.
    柏久阳. 2219铝合金GTA增材制造及其热处理过程的组织演变[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    Bai Jiuyang. Microstructure evolution of 2219-Al during GTA based additive manufacturing and heat treatment[D]. Harbin: Harbin Institute of Technology, 2017.
    顾江龙. CMT 工艺增材制造Al-Cu-(Mg)合金的组织与性能的研究[D]. 沈阳: 东北大学, 2016.

    Gu Jianglong. Study on microstructure and mechanical properties of additively manufactured Al-Cu-(Mg) alloys with the CMT process[D]. Shenyang: Northeastern University, 2016.
    从保强, 孙红叶, 彭鹏, 等. Al-6.3Cu AC-GTAW电弧增材成形的气孔控制[J]. 稀有金属材料与工程, 2017, 47(5): 1359 − 1364.

    Cong Baoqiang, Sun Hongye, Peng Peng, et al. Porosity control of wire + arc additively manufactured Al-6.3Cu alloy deposition using AC-GTAW process[J]. Rare Metal Materials and Engineering, 2017, 47(5): 1359 − 1364.
    郝轩. CMT电弧增材制造2319铝合金组织及力学性能调控[D]. 南昌: 南昌航空大学, 2020.

    Hao Xuan. Control of microstructure and mechanical properties of 2319 aluminum alloy manufactured by CMT wire arc additive manufacturing[D]. Nanchang: Nanchang Hangkong University, 2020.
    Gu J, Ding J, Williams S W, et al. The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al-6.3Cu alloy[J]. Materials Science and Engineering A, 2016, 651: 18 − 26. doi: 10.1016/j.msea.2015.10.101
    Zhang Z, Ma Z, He S, et al. Effect of laser power on the microstructure and mechanical properties of 2319-Al fabricated by wire-based additive manufacturing[J]. Journal of Materials Engineering and Performance, 2021, 30(1): 6640 − 6649.
    Zhou Yinghui, Lin Xin, Kang Nan, et al. Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy[J]. Journal of Materials Science & Technology, 2020, 37(2): 143 − 153.
    Wang S, Gu H, Wang W, et al. Study on microstructural and mechanical properties of an Al-Cu-Sn alloy wall deposited by double-wire arc additive manufacturing process[J]. Materials, 2020, 13(1): 73 − 82.
    姜宏伟, 张树玲, 陈炜晔, 等. 稀土亿对再生ADC12铝合金组织与抗拉强度的影响[J]. 热加工工艺, 2018, 47(15): 79 − 82,86.

    Jiang Hongwei, Zhang Shuling, Chen Weiye, et al. Effect of rare earth yttriun on microstructure and compressive strength of regenerated ADC12 aluminum alloy[J]. Hot Working Technology, 2018, 47(15): 79 − 82,86.
    Xu S P, Shi C S, Zhao N Q, et al. Microstructure and tensile properties of A356 alloy with different Sc/Zr additions[J]. Rare Metals, 2021, 40(9): 2514 − 2522. doi: 10.1007/s12598-020-01529-8
    Tao Chengchang, Huang Hongjun, Yuan Xiaoguang, et al. Effect of Y element on microstructure and hot tearing sensitivity of as-cast Al-4.4Cu-1.5Mg-0.15Zr alloy[J]. International Journal of Metalcasting, 2022, 16: 1010 − 1019. doi: 10.1007/s40962-021-00666-9
    Zhang Xingguo, Mei Feiqiang, Zhang Huanyue, et al. Effects of Gd and Y additions on microstructure and properties of Al-Zn-Mg-Cu-Zr alloy[J]. Materials Science & Engineering A, 2012, 552: 230 − 235.
    Pozdniakov A V, Barkov R Y. Microstructure and materials characterisation of the novel Al-Cu-Y alloy[J]. Materials Science & Technology, 2018, 34(12): 1489 − 1496.
    Min L, Cai L, Liu P. The effect of Y on microstructure and properties of Al-5wt.%Cu based alloy[J]. Key Engineering Materials, 2012, 522: 227 − 230. doi: 10.4028/www.scientific.net/KEM.522.227
    Zhang L, Masset P J, Tao X, et al. Thermodynamic description of the Al-Cu-Y ternary system[J]. CALPHAD-Computer Coupling of Phase Diagrams and Thermochemistry, 2011, 25(4): 574 − 579.
    Wang B, Yi Y, He H, et al. Effects of deformation temperature on second-phase particles and mechanical properties of multidirectionally-forged 2A14 aluminum alloy[J]. Journal of Alloys and Compounds, 2021, 871: 159459. doi: 10.1016/j.jallcom.2021.159459
  • Related Articles

    [1]JI Xinghong, LIANG Zhaofeng, ZHANG Gerui, LU Hao, ZHANG Liang, YUAN Bo. Effect of ultrasonic spinning with welding on the microstructure and mechanical properties of 7075 aluminum alloy welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 36-42. DOI: 10.12073/j.hjxb.20231212004
    [2]YAO Xingzhong, LI Huijun, YANG Zhenwen, WANG Ying. Tailoring the microstructure and mechanical properties of wire arc additive manufactured Ti-6Al-4V alloy by trace TiC powder addition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(6): 12-19. DOI: 10.12073/j.hjxb.20230422001
    [3]WU Kai, BU Zhixiang, KUANG Xiaocao, WEI Ligeng, WANG Lishi. Effect of the additional water-cooling on the microstructure and mechanical properties of wire arc additive manufacturing of 4047 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 127-132. DOI: 10.12073/j.hjxb.20221121002
    [4]SHEN Lei, HUANG Jiankang, LIU Guangyin, YU Shurong, FAN Ding, SONG Min. Microstructure and properties of titanium alloy made by plasma arc and AC auxiliary arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 57-63. DOI: 10.12073/j.hjxb.20220918002
    [5]BA Peipei, DONG Zhihong, ZHANG Wei, PENG Xiao. Microstructure and mechanical properties of 12CrNi2 alloy steel manufactured by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 8-17. DOI: 10.12073/j.hjxb.20210323003
    [6]CHEN Xiaohui, ZHANG Shuquan, RAN Xianzhe, HUANG Zheng. Effect of arc power on microstructure and mechanical properties of austenitic stainless steel 316L fabricated by high efficient arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 42-49. DOI: 10.12073/j.hjxb.20190818001
    [7]SUN Huhao, XUE Songbai, FENG Xianmei, LIN Zhongqiang, LI Yang. Microstructure and mechanical properties of weld joint of marine 6082 aluminum alloy By TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(2): 91-94.
    [8]ZHANG Man, XUE Songbai, DAI Wei, LOU Yinbin, WANG Shuiqing. Mechanical properties and microstructure of 3003 Al-alloy brazed joint with Zn-Al filler metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (3): 61-64.
    [9]CHENG Donghai, HUANG Jihua, LIN Haifan, ZHANG Hua. Microstructure and mechanical analysis of Ti-6Al-4V laser butt weld joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (2): 103-106.
    [10]SONG Jianling, LIN Sanbao, YANG Chunli, FAN Chenglei. Microstructure and mechanical properties of TIG brazing of stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (4): 105-108.
  • Cited by

    Periodical cited type(2)

    1. 任成龙. 激光切割工艺对焊接残余应力预测精度影响. 焊接技术. 2025(02): 75-78 .
    2. 陈建均. 深远海风电工程水下修复工艺的应用. 广州航海学院学报. 2024(04): 59-64 .

    Other cited types(0)

Catalog

    Article views (387) PDF downloads (76) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return