Advanced Search
LI Zhuoran, YU Kang, LIU Bing, FENG Jicai. Microstructure and properties of GH4169 vacuum diffusion bonded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (11): 13-16.
Citation: LI Zhuoran, YU Kang, LIU Bing, FENG Jicai. Microstructure and properties of GH4169 vacuum diffusion bonded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (11): 13-16.

Microstructure and properties of GH4169 vacuum diffusion bonded joint

More Information
  • Received Date: May 24, 2009
  • The vacuum diffusion bonding process was used to weld GH4169 alloy and the effects of process parameters on the interface structure,interface bonding holes and mechanical properties of the joints were investigated.The experimental results without interlayer show that with the increase of diffusion time and diffusion pressure in the range of 950-1 150℃,both the number and size of interface bonding hole decrease and the maximum tensile strength is 658 MPa,but the discontinuous interface holes still exist.With the Cu interlayer,the solid solution layer exists on the interface and the maximum tensile strength is 745 MPa.
  • Related Articles

    [1]HUANG Huizhen, ZHAO Yanan, PENG Ruyi, DUAN Yuande. Growth kinetics of intermetallic compounds formation between liquid Sn-9Zn-0.1S solders and Cu substrates interface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 23-28. DOI: 10.12073/j.hjxb.2019400149
    [2]LIU Ning, HUANG Jiankang, CHEN Manjiao, SHI Yu, CAO Rui. Growth analysis of intermetallic compounds on aluminum-steel MIG-brazing interface based on Monte Carlo method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 55-58,62.
    [3]QIU Xiliang, WANG Qian, LIN Tiesong, HE Peng, LU Fengjiao. Effect of Al18B4O33 whiskers on microstructure evolution of intermetallic compound layer and shear behavior of soldered joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 35-38.
    [4]TIAN Qi, ZHAO Zhilong, AI Changhui, REN Haiguo, LI Jingwei, LIU Lin. Microstructure analysis of Co3FeNb2 intermetallics coating layer on Ni-Fe-base superalloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(4): 99-102.
    [5]TIAN Ye, WU Yiping, AN Bing, LONG Danfeng. Interfacial IMC evolution in micron Sn-Ag-Cu soldered joint during thermal aging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 101-104.
    [6]TIAN Ye, WU Yiping, AN Bing, LONG Danfeng. Evolution of interfacial intermetallic compound in small solder joint of fine pitch flip chip during reflow[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (10): 100-104.
    [7]QIN Fei, AN Tong, ZHONG Weixu, LIU Chengyan. Nanoindentation properties of intermetallic compounds in lead-free solder joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 25-28,32.
    [8]QI Kai, WANG Fengjiang, LAI Zhongmin. Inhibition growth of intermetallic compounds at solder/Cu of by addition of Zn into Sn-3.5Ag[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (10): 57-60.
    [9]ZHOU Yong, YANG Guanjun, WANG Hongduo, LI Geng, LI Changjiu. Effect of annealing treamenton formation of intermetallic phase in cold-sprayed Ni/Ti mechanical alloying coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (8): 45-48.
    [10]ZHU Dongmei, WANG Xibao. Mcrostrueture of Fe3A1 intermetallic compound produced by plasma cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 17-19,24.

Catalog

    Article views (194) PDF downloads (68) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return