Advanced Search
ZHAO Chenhao, LI Peng, LI Chao, WANG Yinchen, DONG Honggang. Vacuum diffusion welding of TC4 titanium alloy and 316L stainless steel with AlCoCrNiCuAg high-entropy alloy powder interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(6): 41-51. DOI: 10.12073/j.hjxb.20240328001
Citation: ZHAO Chenhao, LI Peng, LI Chao, WANG Yinchen, DONG Honggang. Vacuum diffusion welding of TC4 titanium alloy and 316L stainless steel with AlCoCrNiCuAg high-entropy alloy powder interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(6): 41-51. DOI: 10.12073/j.hjxb.20240328001

Vacuum diffusion welding of TC4 titanium alloy and 316L stainless steel with AlCoCrNiCuAg high-entropy alloy powder interlayer

More Information
  • Received Date: March 27, 2024
  • Available Online: April 18, 2025
  • Titanium/steel composite components by diffusion welding have a broad application prospect in advanced aerospace manufacturing. The IMCs are the main reason for the deterioration of the joint performance. AlCoCrNiCuAg high-entropy alloy powder interlayer with liquid phase separation was designed. By forming parts of the liquid phase, the adverse influence of single plastic deformation on the microstructure and mechanical properties of the interface was reduced. The effect of AlCoCrNiCuAg high-entropy alloy powder interlayer on the interfacial microstructure and mechanical properties of the joints between TC4 titanium alloy and 316L stainless steel by diffusion welding at different temperatures was investigated. The results show that the typical interfacial microstructure of the joints is α-Ti + β-Ti/β-Ti/β-Ti + Ti(Fe,Ni) + Ti2Ni/Ti(Fe,Ni)/TiFe2 + Fe2Cr5Ti17/ Fe2Cr5Ti17 + λ-(Fe,Cr)2Ti + α-Fe/γ-Fe. As the welding temperature increases, the thickness of Ti(Fe,Ni) and α-Fe adjacent to the TiFe2 reaction layer increases, and the defects at the joint pores are reduced. The shear strength of the joints by diffusion welding exhibits an increasing trend under the synergistic action, and the highest shear strength reaches 181 MPa at 1 010 °C for 30 min. The high-entropy alloy powder interlayer inhibits the generation of TiFe2 and other brittle IMCs and promotes the formation of the (Fe,Ni) solid solution phase, achieving a sound bonding between titanium and steel.

  • [1]
    XIA Y, MA Z, DU Q, et al. Microstructure and properties of the TiAl/GH3030 dissimilar joints vacuum-brazed with a Ti-based amorphous filler metal[J]. Materials Characterization, 2024, 207(1): 113520. doi: 10.1016/j.matchar.2023.113520
    [2]
    ZHANG L, LONG W, DU D, et al. The microstructure and wear properties of diamond composite coatings on TC4 made by induction brazing[J]. Diamond and Related Materials, 2022, 125(5): 109032 − 109040. doi: 10.1016/j.diamond.2022.109032
    [3]
    TASHI R, MOUSAVI S, ATABAKI M. Diffusion brazing of Ti-6Al-4V and austenitic stainless steel using silver-based interlayer[J]. Materials & Design, 2014, 54(2): 161 − 167.
    [4]
    HAO X, DONG H, LI S, et al. Lap joining of TC4 titanium alloy to 304 stainless steel with fillet weld by GTAW using copper-based filler wire[J]. Journal of Materials Processing Technology, 2018, 257: 88 − 100. doi: 10.1016/j.jmatprotec.2018.02.020
    [5]
    胡奉雅, 许国敬, 陈伟, 等. 钛/钢复合板焊接技术研究现状及发展趋势[J]. 焊接学报, 2021, 42(6): 30 − 43.

    HU Fengya, XU Guojing, CHEN Wei, et al. Research status and development trend of titanium/steel bimetallic composite plates of welding[J]. Transactions of the China Welding Institution, 2021, 42(6): 30 − 43.
    [6]
    TOMASHCHUK I, SALLAMAND P. Metallurgical strategies for the joining of titanium alloys with steels[J]. Advanced Engineering Materials, 2018, 20(6): 1700764. doi: 10.1002/adem.201700764
    [7]
    胡若琪, 纪康康, 王颖, 等. 316L不锈钢扩散焊接头组织性能分析[J]. 焊接学报, 2023, 44(5): 1 − 6. doi: 10.12073/j.hjxb.20220602004

    HU Ruoqi, JI Kangkang, WANG Ying, et al. Diffusion bonding of 316L stainless steel[J]. Transactions of the China Welding Institution, 2023, 44(5): 1 − 6. doi: 10.12073/j.hjxb.20220602004
    [8]
    ZHANG Y, JIANG X, FANG Y, et al. Research and development of welding methods and welding mechanism of high-entropy alloys: A review[J]. Materials Today Communications, 2021, 28: 102503. doi: 10.1016/j.mtcomm.2021.102503
    [9]
    LI P, SUN H, LI C, et al. A novel strengthening strategy for diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to 304 stainless steel[J]. Transactions of Nonferrous Metals Society of China, 2023, 33(7): 2121 − 2135. doi: 10.1016/S1003-6326(23)66248-X
    [10]
    LI P, SUN H, WANG S, et al. Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to GH4169 superalloy[J]. Materials Science & Engineering A, 2020, 793: 139843.
    [11]
    LI P, LI C, DONG H, et al. Vacuum diffusion bonding of TC4 titanium alloy to 316 L stainless steel with AlCoCrCuNi2 high-entropy alloy interlayer[J]. Journal of Alloys and Compounds, 2022, 909: 164698. doi: 10.1016/j.jallcom.2022.164698
    [12]
    BALYAKIN I, REMPEL A. Atomistic calculation of the melting point of the high-entropy cantor alloy CoCrFeMnNi[C]//Doklady Physical Chemistry. Moscow: Pleiades Publishing, 2022, 502(1): 11 − 17.
    [13]
    LI P, SUN H, DONG H, et al. Microstructural evolution, bonding mechanism and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy joint fabricated via diffusion bonding[J]. Materials Science & Engineering A, 2021, 814: 141211.
    [14]
    HE P, ZHANG J, ZHOU R, et al. Diffusion bonding technology of a titanium alloy to a stainless steel web with an Ni interlayer[J]. Materials Characterization, 1999, 43(5): 287 − 92.
    [15]
    SAM S, KUNDU S, CHATTERJEE S. Diffusion bonding of titanium alloy to micro-duplex stainless steel using a nickel alloy interlayer: Interface microstructure and strength properties[J]. Materials & Design, 2012, 40: 237 − 244.
    [16]
    ELREFAEY A, TILLMANN W. Solid state diffusion bonding of titanium to steel using a copper base alloy as interlayer[J]. Journal of Materials Processing Technology, 2009, 209(5): 2746 − 2752. doi: 10.1016/j.jmatprotec.2008.06.014
    [17]
    KUMAR H, BHATTACHARYA S, KESKAR N. Solid-state diffusion bonding of pseudo-α-Ti alloy to Ti-stabilized stainless steel: with and without interlayer[J]. Journal of Materials Engineering and Performance, 2022, 31(9): 7527 − 7538. doi: 10.1007/s11665-022-06758-9
    [18]
    MUNITZ A, KAUFMAN M, CHANDLER J, et al. Melt separation phenomena in CoNiCuAlCr high entropy alloy containing silver[J]. Materials Science and Engineering: A, 2013, 560: 633 − 642. doi: 10.1016/j.msea.2012.10.007
    [19]
    GHADERI A, MOGHANNI H, DEHGHANI K. Microstructural evolution and mechanical properties of Al0.5CoCrFeNi high-entropy alloy after cold rolling and annealing treatments[J]. Journal of Materials Engineering and Performance, 2021, 30(10): 7817 − 7825. doi: 10.1007/s11665-021-05886-y
    [20]
    刘捷, 尚青亮, 张炜, 等. 氢化钛粉制备钛及钛合金材料研究进展[J]. 材料导报, 2013, 27(13): 99 − 102.

    LIU Jie, SHANG Qingliang, ZHANG Wei, et al. Research progress in preparing titanium alloy by power metallurgy with titanium hydride power[J]. Materials Reports, 2013, 27(13): 99 − 102.
    [21]
    JABBAREH M, MONJI F. Thermodynamic modeling of Ag-Cu nanoalloy phase diagram[J]. Calphad, 2018, 60: 208 − 213. doi: 10.1016/j.calphad.2018.01.004
    [22]
    KAN C, YANG H. Internet of hearts—large-scale stochastic network modeling and analysis of cardiac electrical signals[M]//Stochastic Modeling and Analytics in Healthcare Delivery Systems. 2018: 211-251.
    [23]
    TSAI K, TSAI M, YEH J. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys[J]. Acta Materialia, 2013, 61(13): 4887 − 4897. doi: 10.1016/j.actamat.2013.04.058
    [24]
    WANG S, WANG K, CHEN G, et al. Thermodynamic modeling of Ti-Fe-Cr ternary system[J]. Calphad, 2017, 56: 160 − 168. doi: 10.1016/j.calphad.2016.12.007
    [25]
    LIANG M, QIN Y, ZHANG D, et al. Microstructural evolution and mechanical properties of vacuum brazed TC4 titanium alloy joints with Ti-Zr-Ni Filler metal[J]. Journal of Materials Engineering and Performance, 2022, 31(11): 9340 − 9348. doi: 10.1007/s11665-022-06907-0
    [26]
    ZHANG Y, ZUO T, TANG Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61: 1 − 93. doi: 10.1016/j.pmatsci.2013.10.001
    [27]
    XIA Y, DONG H, HAO X, et al. Vacuum brazing of Ti6Al4V alloy to 316L stainless steel using a Ti-Cu-based amorphous filler metal[J]. Journal of Materials Processing Technology, 2019, 269: 35 − 44. doi: 10.1016/j.jmatprotec.2019.01.020
  • Related Articles

    [1]HU Ruoqi, ZHANG Junjie, WANG Ying, ZHANG Dongxue, MU Ruijie, YANG Zhenwen. Microstructure and mechanical properties of 6063 Al alloy joints with AlSiMgCu brazing alloy by liquid phase-assisted diffusion bonding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(6): 11-19. DOI: 10.12073/j.hjxb.20240320002
    [2]WANG Yongdong, GONG Shulin, CHANG Mengyang, WANG Jinyu, REN yuanda, JING zonghao. Effect of Nb components on the microstructure and mechanical properties of high-entropy alloy coatings[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 107-113. DOI: 10.12073/j.hjxb.20230329001
    [3]Jipeng ZOU, Jian CHEN, Ruisheng HUANG, Pengbo WU, Bin TENG, Hao CAO. Microstructure and mechanical properties of thick Ti6Al4V alloy welded joint by low vacuum laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 54-60. DOI: 10.12073/j.hjxb.20220114002
    [4]YIN Yuhuan, ZENG Caiyou, GAO Han, ZHANG Tiemin, QI Bojin, CONG Baoqiang. Effect of heat treatment on microstructure evolution and mechanical properties of 2219 aluminum alloy joint as fabricated by double-pulsed TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(4): 42-49. DOI: 10.12073/j.hjxb.20211102003
    [5]NIU Xiaonan, CUI Li, WANG Peng, HE Dingyong, CAO Qing. Effect of nickel aluminum bronze transition layer on microstructure and mechanical properties of laser welded titanium alloy/stainless steel joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 42-47. DOI: 10.12073/j.hjxb.20210722002
    [6]WANG Chungui, ZHAO Yunqiang, Deng Jun, Dong Chunlin, You Jiaqing. Microstructure evolution and mechanical properties of robotic friction stir welded joints of 2024-T4 ultra-thin aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 49-54. DOI: 10.12073/j.hjxb.20201208002
    [7]XU Yusong, FAN Ji, QIU Lu, XU Yunhua. Research on microstructure and properties in interface of diffusion bonding for Cu-0.15Zr and GH3030 with Cu as interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(1): 125-128.
    [8]LIU Peng, LI Yajiang, WANG Juan. Microstructure and properties near interface zone of diffusionbonded joint for Mg/Al dissimilar materials[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 45-48.
    [9]YAO Wei, GONG Shui-li, CHEN Li. Microstructure and mechanical properties of laser welded joint of titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 69-72,76.
    [10]Sun Daqian, Zhou Zhenfeng, Ren Zhenan. Microstructure and Mechanical Properties of Austempered Ductile Iron Welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (4): 202-207.

Catalog

    Article views (26) PDF downloads (13) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return