Citation: | YIN Yuhuan, ZENG Caiyou, GAO Han, ZHANG Tiemin, QI Bojin, CONG Baoqiang. Effect of heat treatment on microstructure evolution and mechanical properties of 2219 aluminum alloy joint as fabricated by double-pulsed TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(4): 42-49. DOI: 10.12073/j.hjxb.20211102003 |
从保强, 樊弢, 齐铂金, 等. 2219铝合金双脉冲VP-GTAW接头组织与性能[J]. 航空制造技术, 2018, 61(20): 16 − 21.
Cong Baoqiang, Fan Tao, Qi Bojin, et al. Microstructure and properties of 2219 aluminum alloy welded joint produced by double-pulsed VP-GTAW process[J]. Aeronautical Manufacturing Technology, 2018, 61(20): 16 − 21.
|
Wang Y P, Cong B Q, Qi B J, et al. Process characteristics and properties of AA2219 aluminum alloy welded by double pulsed VPTIG welding[J]. Journal of Materials Processing Technology, 2019, 266: 255 − 263. doi: 10.1016/j.jmatprotec.2018.11.015
|
Wang Y P, Qi B J, Cong B Q, et al. Keyhole welding of aa2219 aluminum alloy with double-pulsed variable polarity gas tungsten arc welding[J]. Journal of Manufacturing Processes, 2018, 34: 179 − 186. doi: 10.1016/j.jmapro.2018.06.006
|
Wang S C, Starink M J, Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg-(Li) based alloys [J], International materials reviews, 2005, 50(4): 193–215.
|
Ding J K, Wang D P, Wang Y, et al. Effect of post weld heat treatment on properties of variable polarity TIG welded AA2219 aluminium alloy joints[J]. Transaction of Nonferrous Metals Society of China, 2014, 24: 1307 − 1316. doi: 10.1016/S1003-6326(14)63193-9
|
Zhu Z Y, Deng C Y, Wang Y, et al. Effect of post weld heat treatment on the microstructure and corrosion behavior of AA2219 aluminum alloy joints welded by variable polarity tungsten inert gas welding[J]. Materials & Design, 2015, 65: 1075 − 1082.
|
Lü Zongliang, Li Chong, Wan Long, et al. The influence of gradient mismatches on mechanical properties and microstructure of 2219-T6 aluminum alloy VP-TIG joints[J]. China Welding, 2017, 26(4): 20 − 28.
|
周政, 王国庆, 宋建岭, 等. 2219铝合金不同气氛下TIG焊焊接接头组织性能[J]. 焊接学报, 2018, 39(7): 47 − 50,131.
Zhou Zheng, Wang Guoqing, Song Jianling, et al. Microstructure and mechanical properties of 2219 aluminum alloys TIG welding welded joints in different shielding gases[J]. Transactions of the China welding institution, 2018, 39(7): 47 − 50,131.
|
王富鑫, 骆良顺, 王亮, 等. 合金成分和冷却速率对Al-Cu合金凝固过程中初生Al2Cu相生长形貌的影响[J]. 金属学报, 2016, 52(3): 361 − 368. doi: 10.11900/0412.1961.2015.00326
Wang Fuxin, Luo Liangshun, Wang Liang, et al. , Effect of alloy composition and cooling rate on the growth morphology of primary Al2Cu phase in Al-Cu alloy during solidification[J]. Acta Metallurgica Sinica, 2016, 52(3): 361 − 368. doi: 10.11900/0412.1961.2015.00326
|
Gao L, Li K, Ni S, et al. The growth mechanisms of θ' precipitate phase in an Al-Cu alloy during aging treatment[J]. Journal of Materials Science & Technology, 2021, 61: 25 − 32.
|
Fu S h, Yi D Q, Liu H Q, et al. Effects of external stress aging on morphology and precipitation behavior of θ'' phase in Al-Cu alloy[J]. Transaction of Nonferrous Metals Society of China, 2014, 24: 2282−2288.
|
Bahl S, Xiong L H, Allard L F, et al. Aging behavior and strengthening mechanisms of coarsening resistant metastable θ' precipitates in an Al-Cu alloy[J]. Materials & Design, 2021, 198: 109378.
|
Bellón B, Haouala S, Lorca J. An analysis of the influence of the precipitate type on the mechanical behavior of Al-Cu alloys by means of micropillar compression tests[J]. Acta Materialia, 2020, 194: 207 − 223. doi: 10.1016/j.actamat.2020.05.040
|
Zhang P, Bian J J, Zhang J Y, et al. Plate-like precipitate effects on plasticity of Al-Cu alloys at micrometer to sub-micrometer scales[J]. Materials & Design, 2020, 188: 108444.
|
[1] | HE Yingjun, HE Mohan, HE Hongyi, WANG Jinxiang, HUANG Keyi, WANG Yuanxun. Simulation of ultrasonic assisted resistance spot welding of AA6061-TC4 heterogeneous alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240227001 |
[2] | LI Liang, ZHENG Mian, GUO Dong, HE Qing. Advantage of quantum heating on double-vibrator ultrasonic welding of polymers[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 78-83. DOI: 10.12073/j.hjxb.20220114003 |
[3] | YU Jiang, PAN Junlin, MIAO Xinglin, ZHANG Hongtao, GAO Jianguo, SU Zhaofang. Process characteristics of the resistance heat-assisted ultrasonic seam welding of aluminum alloy and copper dissimilar metals[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(7): 76-81. DOI: 10.12073/j.hjxb.20220124001 |
[4] | JI Zhaohui, WANG Hongyang, SUN Lingfeng, LU Pengcheng, WANG Zhiping. Study on resistance welding process of PPS/CF composite[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 80-85. DOI: 10.12073/j.hjxb.20191030001 |
[6] | HE Diqiu, LI Jian, LI Donghui, LIANG Jianzhang. Study on ultrasonic stir hybrid welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (12): 70-72,108. |
[7] | QIU Ranfeng, YU Hua, SHI Hongxin, ZHAN Keke, TU Yimin, SATONAKA Shinobu. Interfacial characteristics of welded joint between aluminum alloy and stainless steel by resistance spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (12): 37-40. |
[8] | SUN Qingjie, LIN Sanbao, YANG Chunli, YAN Jiuchun. Investigation and application of ultrasonic-TIG hybrid welding equipment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (2): 79-82. |
[9] | LIANG Cai-ping, LI Yong-bing, LIN Zhong-qin, CHEN Guan-long. Contact status during squeeze stage of sheet-tube single-sided spot welding using servo gun[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (7): 29-33. |
[10] | LUO Zhen, SHAN Ping, ZHENG Zhen-tai, SHI Tao. Stable distribution analysis to statistical evaluation of contact resistance in aluminum alloy spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (4): 9-12. |
1. |
王晨,雷正龙,宋文清,杨烁,李旭东. CoCrW与T800焊丝对DZ125高温合金表面激光熔覆耐磨层组织及性能的影响. 中国激光. 2025(04): 101-109 .
![]() |