Advanced Search
HU Ruoqi, ZHANG Junjie, WANG Ying, ZHANG Dongxue, MU Ruijie, YANG Zhenwen. Microstructure and mechanical properties of 6063 Al alloy joints with AlSiMgCu brazing alloy by liquid phase-assisted diffusion bonding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(6): 11-19. DOI: 10.12073/j.hjxb.20240320002
Citation: HU Ruoqi, ZHANG Junjie, WANG Ying, ZHANG Dongxue, MU Ruijie, YANG Zhenwen. Microstructure and mechanical properties of 6063 Al alloy joints with AlSiMgCu brazing alloy by liquid phase-assisted diffusion bonding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(6): 11-19. DOI: 10.12073/j.hjxb.20240320002

Microstructure and mechanical properties of 6063 Al alloy joints with AlSiMgCu brazing alloy by liquid phase-assisted diffusion bonding

More Information
  • Received Date: March 19, 2024
  • Available Online: May 13, 2025
  • The heat dissipation structure of aluminum alloy with multilayer microchannels is commonly used in power electronics owing to its efficient heat dissipation capabilities. Achieving high-quality bonding of the alloy is essential for engineering applications. The effects of bonding pressure, holding time, and temperature on the interface microstructure and mechanical properties of the joint created by liquid phase-assisted diffusion bonding of 6063 Al using AlSiMgCu brazing alloy were explored. The results show that the method eliminates the structural inhomogeneity of brazed joints by extruding liquid brazing alloy with a smaller pressure of 0.5 MPa. It also reduces the stringent requirements of diffusion bonding on the surface quality of base material and process parameters. Additionally, it offers high dimensional accuracy and strong adaptability of process parameters. The interface microstructure of the joint is similar within the parameter ranges: pressure of 0.5 ~ 2 MPa, temperature of 530–550 °C, and time of 1 ~ 4 hours. It typically consists of an Al alloy matrix and a small amount of solidified liquid brazing alloy, which fills micro gaps of the same scale as the surface roughness. The tensile strength of the joint remains almost unchanged, which is equal to base material under the parameter of 550 °C/1 h/2 MPa, with a tensile strength of 107 MPa and a deformation rate of only 0.10%.

  • [1]
    KANG M L, ZHOU L, DENG Y L, et al. Microstructure and mechanical properties of 4343/3003/6111/3003 four-layer Al clad sheets subjected to different conditions[J]. Metals, 2022, 12(5): 777. doi: 10.3390/met12050777
    [2]
    JIN X J, ZHANG W J, HAN N M, et al. Corrosion behavior and mechanism of 4004/Al-Mn-Cu-Mg-Si/4004 aluminum brazing sheet in sea water acidified accelerated test[J]. Materials Today Communications, 2023, 35: 106161. doi: 10.1016/j.mtcomm.2023.106161
    [3]
    YUAN T, ZUO M M, YUAN Z P, et al. The effect of microstructural evolution on the brazeability of two-layer Al sheets[J]. Crystals, 2022, 12(10): 1387. doi: 10.3390/cryst12101387
    [4]
    YUAN Z P, YUAN T, TU Y Y, et al. Gradient multi-layered aluminum sheet with excellent corrosion resistance[J]. Vacuum, 2023, 209: 111779. doi: 10.1016/j.vacuum.2022.111779
    [5]
    YUAN Z P, TU Y Y, YUAN T, et al. Gradient multilayer aluminum sheets used in automotive heat exchangers[J]. Journal of Materials Science, 2021, 56(8): 5215 − 5232 doi: 10.1007/s10853-020-05584-5
    [6]
    KANG M L, ZHOU L, DENG Y L, et al. Effects of annealing and deformation on sagging resistance of a hot-rolled, four-layered Al alloy clad sheet[J]. Advances in Materials Science and Engineering, 2021, 2021: 6625548. doi: 10.1155/2021/6625548
    [7]
    TIAN R Y, CHEN S, YANG B Y, et al. Elemental diffusion, atomic substitution mechanisms and interfacial fracture behavior in laser welded-brazed Al/Ti[J]. Materials Characterization, 2023, 202: 112998. doi: 10.1016/j.matchar.2023.112998
    [8]
    王瑞萍, 肖宗林, 杨旭, 等. 采用Nb中间层扩散连接Zr-4合金接头界面组织与性能[J]. 焊接学报, 2024, 45(8): 33 − 40. doi: 10.12073/j.hjxb.20230720001

    WANG Ruiping, XIAO Zonglin, YANG Xu, et al. Microstructures and properties of Zr-4 alloy diffusion bonding joint with Nb interlayer[J]. Transactions of the China Welding Institution, 2024, 45(8): 33 − 40. doi: 10.12073/j.hjxb.20230720001
    [9]
    PEI C, WU X, ZHANG G Q, et al. Microstructures and mechanical properties of brazed 6063 aluminum alloy joint with Al-Cu-Si-Ni filler metal[J]. Welding in the World, 2020, 64(11): 1933 − 1938. doi: 10.1007/s40194-020-00972-6
    [10]
    FEDOROV V, UHLIG T, WAGNER G. Microstructure and mechanical properties of AA 6082/AISI 304 joints brazed using Al-Ge-Si filler metal[J]. Metals, 2023, 13(9): 1574. doi: 10.3390/met13091574
    [11]
    QIU D C, CHENG D F, DONG W W, et al. Brazing 55 vol. % SiCp/ZL102 composites with Al-17.0Cu-8.0Mg-1.5Ni filler metal[J]. Welding in the World, 2023, 67(8): 2067 − 2077. doi: 10.1007/s40194-023-01548-w
    [12]
    DU X, ZHAO F, YANG R G. Effect of Sr on the microstructure and properties of Al-6.5Si-20Cu-1.5Ni filler metal for brazing 6063 aluminum alloy[J]. Welding in the World, 2023, 67(8): 2039 − 2048. doi: 10.1007/s40194-023-01535-1
    [13]
    胡若琪, 纪康康, 王颖, 等. 316L不锈钢扩散焊接头组织性能分析[J]. 焊接学报, 2023, 44(5): 1 − 6. doi: 10.12073/j.hjxb.20220602004

    HU Ruoqi, JI Kangkang, WANG Ying, et al. Diffusion bonding of 316L stainless steel[J]. Transactions of the China Welding Institution, 2023, 44(5): 1 − 6. doi: 10.12073/j.hjxb.20220602004
    [14]
    李悦, 王建峰, 马龙飞, 等. 保温时间对钛合金板翅式换热器真空钎焊过程温度场及残余应力的影响[J]. 焊接学报, 2024, 45(2): 33 − 40. doi: 10.12073/j.hjxb.20230303001

    LI Yue, WANG Jianfeng, MA Longfei, et al. Effect of holding time on temperature field and residual stress in the vacuum brazing process of titanium alloy plate-fin heat exchangers[J]. Transactions of the China Welding Institution, 2024, 45(2): 33 − 40. doi: 10.12073/j.hjxb.20230303001
    [15]
    ZHOU Z, DING Y L, SHAO W J, et al. Effect of joining temperature on microstructure and properties of Mg/Al diffusion bonded joints[J]. China Welding, 2024, 33(4): 51 − 57.
    [16]
    LI J, ZHAO H L, ZHANG Y Z, et al. Brazing mechanism of 70% SiCp/Al composites with Ti foam/AlSiMg filler metal[J]. Journal of Materials Engineering and Performance, 2023, 32(7): 2983 − 2992.
    [17]
    MORADI K, MIRSALEHI S E. Dissimilar joining of low-carbon steel to 6061-T6 Aluminum alloy by novel method of pinless friction stir spot welding-brazing[J]. Metals and Materials International, 2023, 29(1): 174 − 190. doi: 10.1007/s12540-022-01204-w
    [18]
    WU H Y. Influence of process variables on press bonding of superplastic 8090 Al–Li alloy[J]. Materials Science and Engineering-A, 1999, 264: 194 − 200. doi: 10.1016/S0921-5093(98)01084-3
    [19]
    WU H Y, LEE S, YOU Y H. Genuine solid-state bonding characteristics of superplastic Al-alloy[J]. Journal of Materials Processing Technology, 2002, 122: 226 − 231. doi: 10.1016/S0924-0136(02)00006-7
    [20]
    XU D Z, MENG L G, ZHANG C R, et al. Interface microstructure evolution and bonding mechanism during vacuum hot pressing bonding of 2A12 aluminum alloy[J]. Materials Characterization, 2022, 189: 111997. doi: 10.1016/j.matchar.2022.111997
    [21]
    ZHAO P, LI Z W, XIA Y H, et al. Ultrasonic-assisted liquid phase diffusion bonding of Al alloys under low temperature and pressure for high-temperature resistance applications[J]. Materials Design, 2023, 225: 111544. doi: 10.1016/j.matdes.2022.111544
    [22]
    XIE B, ZHANG Q, ZHANG L, et al. Ultrahigh discharged energy density in polymer nanocomposites by designing linear/ferroelectric bilayer heterostructure[J]. Nano Energy, 2018, 54: 437 − 446. doi: 10.1016/j.nanoen.2018.10.041
    [23]
    HUANG Z Y, DU H Q, LIU L, et al. Ultrasonic effect mechanism on transient liquid phase bonding joints of SiCp reinforced Mg metal matrix composites using Zn-Al-Zn multi-interlayer[J]. Ultrasonics-Sonochemistry, 2018, 43: 101 − 109 doi: 10.1016/j.ultsonch.2017.11.022
    [24]
    SHIRZADI A A, SAINDRENAN G. New method for flux free diffusion brazing of aluminum alloys using liquid gallium (UK patent application 0128623.6)[P]. Science and Technology of Welding and Joining, 2003, 8(2): 149 - 153.
    [25]
    梁宁, 沈以赴. 活性元素镁对铝合金真空钎焊接头性能的影响[J]. 焊接学报, 2007(7): 61 − 64. doi: 10.3321/j.issn:0253-360X.2007.07.016

    LIANG Ning, SHEN Yifu. Influence of active element Mg on joint properties of aluminum alloy vacuum brazing[J]. Transactions of the China Welding Institution, 2007(7): 61 − 64. doi: 10.3321/j.issn:0253-360X.2007.07.016
    [26]
    张满, 夏之穹, 张临财, 等. Zn-Al钎料钎焊6063铝合金铺展性能及接头断裂机理分析[J]. 焊接学报, 2015, 36(8): 63 − 66.

    ZHANG Man, XIA Zhiqiong, ZHANG Lincai, et al. Spreadability of Zn-Al filler metal and fracture mechanism of 6063 Al-alloy brazed joint[J]. Transactions of the China Welding Institution, 2015, 36(8): 63 − 66.
  • Related Articles

    [1]ZHU Xinjie, LI Yongtao, DENG Mingxi, YAO Sen, ZHANG Jie. Variable-rank imaging and testing of multi-frames for line array of ultrasonic guided waves with weld scattering[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 80-86. DOI: 10.12073/j.hjxb.20231023001
    [2]ZHU Xinjie, LI Yongtao, DENG Mingxi, YAO Sen. An ultrasonic SH-guided-wave transducer for image detection of welded structure with multi-frame and in full rank[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 84-92. DOI: 10.12073/j.hjxb.20220627001
    [3]CHI Dazhao, GUO Tao, ZHANG Runqi, ZHANG Tao, SHEN Hao. Study on real-time imaging detection of bonding defects by acoustic impedance method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 107-111. DOI: 10.12073/j.hjxb.20220702001
    [4]MA Nüjie, GAO Xiangdong, DAI Xinxin, ZHANG Nanfeng. Magnetic field characteristic simulation and magneto-optical imaging detection of weld cracks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 77-81. DOI: 10.12073/j.hjxb.2019400239
    [5]MO Ling, GAO Xiangdong, XIAO Zhenlin, CHEN Xiaohui. Weld detection of laser welding using magneto-optical color imaging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(1): 37-40.
    [6]ZHU Xinjie, CHEN Yifang, HAN Zandong, DU Dong. An ultrasonic SH-guided-wave transducer for ultrasonic imaging and testing of plate with welded structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (2): 17-21.
    [7]ZHU Xinjie, HAN Zandong, DU Dong, CHEN Yifang. Ultrasonic SH guided waves imaging and test on complicated TLB welded structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (9): 29-32,48.
    [8]CHEN Ming, MA Yuezhou, CHEN Guang. Weld defects detection for X-ray linear array real-time imaging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 81-84.
    [9]GANG Tie, CHI Da-zhao, YUAN Yuan. Ultrasonic TOFD technique and image enhancemetn based on synthetin aperture fousing techinque[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (10): 7-10.
    [10]Liu Dezhen, Wei Xing, Zhou Yanhua. Ultrasonic C Scanning Image of Weld Defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (2): 77-83.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (47) PDF downloads (16) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return