Advanced Search
HUANG Yong, QU Huaiyu, WANG Xinxin, FAN Ding. Effect of distribution of anode temperature on weld appearance in arc coupled AA-TIG high speed welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (9): 13-16.
Citation: HUANG Yong, QU Huaiyu, WANG Xinxin, FAN Ding. Effect of distribution of anode temperature on weld appearance in arc coupled AA-TIG high speed welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (9): 13-16.

Effect of distribution of anode temperature on weld appearance in arc coupled AA-TIG high speed welding

More Information
  • Received Date: July 15, 2012
  • The distribution of anode temperature during arc coupled AA-TIG welding was measured with the thermocouple method.In the vertical direction of connection line between the main and aided tungsten electrodes,the temperature gradually descended outward from the connection line.The maximum temperature appeared in the main electrode,and the minimum temperature occurred at the center between two electrodes.In the direction of the connection line of two electrodes,with the increase of the distance between two electrodes,the temperature in the central region of the coupled arc gradually decreased,while that in the outer region increased.The distribution of temperature transferred from single-peak mode to double-peak mode.When the distance between the main electrode and aided electrode was large,the arc heat source in the direction of connection line between two electrodes was stretched,which would help to eliminate undercut and humping defects during high speed welding.
  • Related Articles

    [1]LI Qiao, SU Shijie, CHEN Yun, WANG Hairong, TANG Wenxian. On-line quality assessment of mooring chain flash welding based on dynamic spatiotemporal warping[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 52-58. DOI: 10.12073/j.hjxb.2019400071
    [2]ZHANG Hongjie, ZHANG Jianye, SUI Xiuwu. Quality assessment for resistance spot welding based on Bayesian image recognition technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(1): 109-112.
    [3]LI Xiangwei, ZHAO Wenzhong, ZHENG Chengde. Weld fatigue life assessment based on fuzzy quality evaluation model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (8): 49-52.
    [4]JI Chuntao, LUO Xianxing, Deng Lipeng. Acquisition and analysis of resistance spot welding quality characteristics[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (6): 43-46.
    [5]ZHANG Hongjie, HOU Yanyan. Quality evaluation of the resistance spot welding based on PCASVM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 97-100.
    [6]MENG Fanjun, ZHU Sheng, CAO Yong, LIANG Yuanyuan. Fuzzy synthesis estimation of bead surface quality for pulse MAG welding prototyping[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 25-28.
    [7]PAN Cunhai, DU Sumei, SONG Yonglun. Displacement signal time-frequency domain analysis and quality judgment of aluminum alloy resistance spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (7): 33-36.
    [8]ZHANG Peng-xian, ZHANG Hong-jie, MA Yue-zhou, CHEN Jian-hong. On-line quality estimation of resistance spot welding based on extraction of signals feature[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (9): 52-57.
    [9]WANG Jian-jun, YANG Xue-qin, LIN Tao, CHEN Shan-ben. Pattern Recognition of Top-Side Pool Image in Aluminum Alloy TIG Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (5): 73-76.
    [10]ZHANG Zhong-dian, LI Dong-qing, YIN Xiao-hui. Study on Spot Welding Quality Monitoring Models by Linear Regression Theory[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (4): 31-35.

Catalog

    Article views (180) PDF downloads (98) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return