Advanced Search
LI Qiao, SU Shijie, CHEN Yun, WANG Hairong, TANG Wenxian. On-line quality assessment of mooring chain flash welding based on dynamic spatiotemporal warping[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 52-58. DOI: 10.12073/j.hjxb.2019400071
Citation: LI Qiao, SU Shijie, CHEN Yun, WANG Hairong, TANG Wenxian. On-line quality assessment of mooring chain flash welding based on dynamic spatiotemporal warping[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 52-58. DOI: 10.12073/j.hjxb.2019400071

On-line quality assessment of mooring chain flash welding based on dynamic spatiotemporal warping

More Information
  • Received Date: September 24, 2018
  • The flash welding mooring chain has become the mainstream of the high-quality mooring chain market in the shipbuilding industry. In this present work, we proposed a new methodology for the online quality assessment of flash welding. First, the various sensor signals in the real-world welding process are collected in this work. Second, a novel spatiotemporal warping algorithm is proposed to quantify the spatiotemporal dissimilarity of current and electrode position signals during flash welding processes. Third, the dissimilar distance matrix is embedded into the feature vector of the low dimensional space while the original dissimilar distance between the signals were preserved. Finally, the KNN classification algorithm and K-fold cross-validation are proposed to classify the embedded feature vectors (coordinates in low-dimensional space). Experimental results show that the proposed method in this paper can not only use the collected sensor signals for real-time welding quality assessment, but also effectively reveal the difference between the flash welding processes.
  • Feng Qiuyuan, Li Tingju, Ding Zhimin, et al. Research situation and development trends of flash butt welding[J]. Materials Science & Technology, 2008(1): 49 − 53
    冯秋元, 李廷举, 丁志敏, 等. 闪光对焊技术研究现状及发展趋势[J]. 材料科学与工艺, 2008(1): 49 − 53
    陈 建. 钢轨闪光焊接头质量检测与预测[D]. 西南交通大学, 2010.
    Zeng Fenfang, Yu Pingliang, Chen Hongwei, et al. Computer parameter test system for flash welding of anchor chain[J]. Shipbuilding Technology, 1995(8): 42 − 44, 47
    Chvertko Y, Shevchenko M, Pirumov A. Monitoring of the process of flash-butt welding[J]. Soldagem & Inspeção, 2013, 18(1): 31 − 38.
    Su Shijie, Gao Lili, Wang Xinyan. Control system for anchor chain flash butt welder based on industrial PC[J]. Transactions of the China Welding Institution, 2011, 32(11): 96 − 99
    曾芬芳, 虞平良, 陈红卫, 等. 锚链闪光焊计算机参数测试系统[J]. 造船技术, 1995(8): 42 − 44, 47
    Wang Zhiping, Wang Kezheng, He Fangdian. Technological experiment of 500 kW preheating flash butt welding[J]. Transactions of the China Welding Institution, 2000, 21(4): 76 − 79, 101
    苏世杰, 郜利利, 王新彦. 基于工控机的锚链闪光焊机控制系统设计与开发[J]. 焊接学报, 2011, 32(11): 96 − 99
    Zhang Zhuying, Huang Yulong, Wang Hanhu. A new KNN classification approach[J]. Computer Science, 2008, 35(3): 170 − 172.
    王治平, 王克争, 何方殿. 500 kW预热闪光焊工艺试验[J]. 焊接学报, 2000, 21(4): 76 − 79

    , 101
    Jeong Y S, Jeong M K, Omitaomu O A. Weighted dynamic time warping for time series classification[J]. Pattern Recognition, 2011, 44(9): 2231 − 2240.
    Myers C S, Rabiner L R, Rosenberg A E. Performance trade‐offs in dynamic time warping algorithms for isolated word recognition[J]. IEEE Transactions on Acoustics Speech & Signal Processing, 1980, 28(6): 623 − 635.
    Tormene P, Quaglini G S, Stefanelli M. Matching incomplete time series with dynamic time warping: an algorithm and an application to post-stroke rehabilitation[J]. Artificial Intelligence in Medicine, 2009, 45(1): 11 − 34.
    Yang H, Kan C, Liu G, et al. Spatiotemporal differentiation of myocardial infarctions[J]. IEEE Transactions on Automation Science & Engineering, 2013, 10(4): 938 − 947.
    Chen K, Hui Y. Internet of hearts-large-scale stochastic network modeling and analysis of cardiac electrical signals[M]. Stochastic Modeling and Analytics in Healthcare Delivery Systems, 2017.
    张著英, 黄玉龙, 王翰虎. 一个高效的KNN分类算法[J]. 计算机科学, 2008, 35(3): 170 − 172
  • Related Articles

    [1]XIE Yuxin, GONG Yefei, GU Xinhao, CHEN Xiaobin, WANG Meng, XU Huigang. Research on weld surface defect detection method based on RGB-D feature fusion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(12): 72-78. DOI: 10.12073/j.hjxb.20230712002
    [2]GUO Zhongfeng, LIU Junchi, YANG Junlin. Weld recognition based on key point detection method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 88-93. DOI: 10.12073/j.hjxb.20230204001
    [3]WANG Rui, HU Yunlei, LIU Weipeng, LI Haitao. Defect detection of weld X-ray image based on edge AI[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 79-84. DOI: 10.12073/j.hjxb.20210516001
    [4]LI Hexi, HAN Xinle, FANG Zaojun. A visual model of welding robot based on CNN deep learning[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 154-160. DOI: 10.12073/j.hjxb.2019400060
    [5]GAO Weixin, HU Yuheng, WU Xiaomeng. A new algorithm for detecting defects of sub-arc welding x-ray image based on compress sensor theory[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(11): 85-88.
    [6]LI Xueqin, LIU Peiyong, YIN Guofu, JIANG Honghai. Weld defect detection by X-ray images method based on Fourier fitting surface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(10): 61-64.
    [7]SHAO Jiaxin, DU Dong, ZHU Xinjie, GAO Zhiling, WANG Chen. Weld defect detection of double sides weld based on X-ray digitized image[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (11): 21-24.
    [8]CHEN Ming, MA Yuezhou, CHEN Guang. Weld defects detection for X-ray linear array real-time imaging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 81-84.
    [9]CAI Guorui, DU Dong, TIAN Yuan, HOU Runshi, GAO Zhiling. Defect detection of X-ray images of weld using optimized heuristic search based on image information fusion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (2): 29-32.
    [10]LIANG De-qun, SHEN San, YANG Hai-jun. Measurement of Deep Sclae on Weld Defects based on Point X-Pay Source[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (3): 5-8.
  • Cited by

    Periodical cited type(19)

    1. 戴铮,刘骁佳,潘泉. 基于CCBFE-RCNN模型的焊缝X射线图像缺陷识别算法. 焊接学报. 2025(01): 24-33 . 本站查看
    2. 简珂,王帅,李强. 基于连通域分析的钢管焊缝缺陷检测方法. 测控技术. 2025(02): 11-17 .
    3. 李闯,马行,穆春阳,刘永鹿,秦政硕,张弘. 改进YOLOv3的轻量级铸件焊缝表面缺陷检测. 组合机床与自动化加工技术. 2024(01): 156-159+163 .
    4. 张婷,王登武. 基于空洞分层注意力胶囊网络的X射线焊缝缺陷识别方法. 宇航计测技术. 2024(02): 45-51 .
    5. 穆春阳,李闯,马行,刘永鹿,杨科,刘宝成. 改进YOLOv7-tiny的轻量化大型铸件焊缝缺陷检测. 组合机床与自动化加工技术. 2024(07): 156-160 .
    6. 傅留虎. 基于轻量化特征增强网络的焊缝缺陷检测方法. 焊接. 2024(07): 38-49+57 .
    7. 李国栋,吴志生,彭甫镕,郝康将,昝晓亮,郭威. 基于有监督对比学习的焊缝缺陷X射线检测方法. 焊接. 2024(07): 7-14 .
    8. 苏志威,黄子涵,邱发生,郭朝阳,殷晓芳,邬冠华. 基于改进YOLOv8的航空铝合金焊缝缺陷检测方法. 航空动力学报. 2024(06): 121-129 .
    9. 宋杰三. 基于改进Yolov8的焊缝缺陷检测研究. 中国设备工程. 2024(14): 196-199 .
    10. 李兴红. 基于深度学习的液氯罐车射线图像缺陷自动识别研究. 中国高新科技. 2024(12): 15-17 .
    11. 张小刚,俞东宝,汤慧,朱永利. 基于深度学习的X射线燃料棒端塞缺陷自动检测方法研究. 原子能科学技术. 2024(08): 1767-1776 .
    12. 贾韶辉,李亚平,高炜欣,彭云超,张新建,王玉霞. 基于X射线图像与稀疏描述的管道环焊缝缺陷自动识别法. 油气储运. 2024(09): 1048-1055+1079 .
    13. 张睿,李吉. 多级多尺神经网络自搜索的焊缝缺陷语义分割. 计算机辅助设计与图形学学报. 2024(11): 1750-1760 .
    14. 谢雨欣,龚烨飞,谷心浩,陈晓彬,王萌,徐惠钢. 基于RGB-D特征融合的焊缝表面缺陷检测方法. 焊接学报. 2024(12): 72-78 . 本站查看
    15. 张睿,高美蓉,傅留虎,张鹏云,白晓露,赵娜. 基于多域多尺度深度特征自适应融合的焊缝缺陷检测研究. 振动与冲击. 2023(17): 294-305+313 .
    16. 郑孝干,杨毅豪,林啸,吕雷,肖毓勇,黄潞璐. 基于AI的输电线路导线断散股缺陷检测方法. 电工技术. 2023(20): 69-71+74 .
    17. 田伟倩,朱华兵,张淋,胡斌. 基于卷积神经网络的工业缺陷检测研究进展. 中国特种设备安全. 2023(12): 1-7 .
    18. 邓智超,颜润明,杨蕙同,陈浩林,赖锦祥,雷亮. 基于改进残差网络的多视图焊点缺陷检测. 焊接学报. 2022(03): 56-62+116 . 本站查看
    19. 杨国威,张金丽. 基于光栅投影的焊后焊缝表面三维测量. 焊接学报. 2022(04): 100-105+112+119-120 . 本站查看

    Other cited types(17)

Catalog

    Article views (145) PDF downloads (5) Cited by(36)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return