Advanced Search
LI Xiangwei, ZHAO Wenzhong, ZHENG Chengde. Weld fatigue life assessment based on fuzzy quality evaluation model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (8): 49-52.
Citation: LI Xiangwei, ZHAO Wenzhong, ZHENG Chengde. Weld fatigue life assessment based on fuzzy quality evaluation model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (8): 49-52.

Weld fatigue life assessment based on fuzzy quality evaluation model

More Information
  • Received Date: April 28, 2009
  • The fuzzy comprehensive evaluation model of the welding quality is introduced based on the principle of fuzzy mathematics.According to GB3323-2005 standard,the weld quality classification factor set,the evaluation set and the weight vector are established,and fuzzy comprehensive evaluation is completed.In accordance with the principle of the largest degree of membership,the level of weld quality is determined,the livability of S-N curve have objective choice,so that the quantity of weld fatigue life is amended.Finally,by BS7608-1993 fatigue design and assessment of steel structures standard and actual example,the fuzzy evaluation model based on the quality of the weld fatigue life evaluation process is explained,and the results show that the model is feasible,the calculation results are reasonable.
  • Related Articles

    [1]GAO Yanfeng, XIAO Jianhua. Curved weld-seam tracking based on information fusion of welding gun inclinations[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(12): 15-18.
    [2]HONG Bo, YAN Junguang, YANG Jiawang, LIU Xiang. A capacitive sensor for automatic weld seam tracking[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(2): 55-58.
    [3]QIN Tao, ZHANG Ke, DENG Jingyu, JIN Xin. Algorithm of extracting feature lines in welding seam image based on improved least-square method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (2): 33-36.
    [4]XIAO Xinyuan, SHI Yonghua, WANG Guorong, Li Hexi. Robotic underwater weld seam tracking based on visual sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 33-36.
    [5]HONG Bo, WEI Fuli, LAI Xin, PAN Jiluan, YIN Li. A magnetic-control arc sensor for seam-tracking[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (5): 1-4,8.
    [6]YIN Yi, HONG Bo, ZHANG Chen-shu, QU Yue-bo. Seam tracking system based on photoelectric sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (9): 93-98.
    [7]CAD Hong-ming, FAN Chong-jian, WU Lin. Weld seam tracking based on micro-beam plasma arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (2): 80-83.
    [8]GAO Xiang-dong, LUO Xi-zhu, S. J. Na. An image centroid method for seam tracking in gas tungsten arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (6): 15-18.
    [9]XIONG Zhen-yu, ZHANG Hua, PAN Ji-luan. Seam tracking for space position based on rotating arc sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (5): 37-41.
    [10]Wang Xiaodong, Liu Hongqian, Wu Wei. A New Type of Laser Distance Scanner for Seam Tracking[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1996, (3): 183-187.

Catalog

    Article views (291) PDF downloads (122) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return