Advanced Search
TAN Mingming, LING Xiang. Analysis of influence parameters on residual stress in glasstometal vacuum brazing flat joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (2): 21-24.
Citation: TAN Mingming, LING Xiang. Analysis of influence parameters on residual stress in glasstometal vacuum brazing flat joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (2): 21-24.

Analysis of influence parameters on residual stress in glasstometal vacuum brazing flat joint

More Information
  • Received Date: December 19, 2010
  • Because of unreasonable design,high residual stress exists in the glass-to-metal welding joint which results in the joint strength being weakened seriously.The finite element method of a sequentially coupling temperature field and welding residual field was used to simulate the vacuum brazing process of the glass and metal plate,the effects of the thickness of glass,metal and brazing filler metal,the brazing pressure and the brazing temperature on residual stress in the stress concentration area were analyzed,and the fracture morphological features of the welding joint were also observed through the tensile test.The results showed that the residual stress was increased with the increase of the thickness of metal,the thickness of metal had the greatest impact on the residual stress,the residual stress was reduced with the increase of brazing pressure and brazing temperature;the thickness of glass and brazing filler metal had little effect on the residual stress;the fracture area of the welding joint occured on the glass-to-metal interface which was close to the glass side.
  • Related Articles

    [1]LI Qiao, SU Shijie, CHEN Yun, WANG Hairong, TANG Wenxian. On-line quality assessment of mooring chain flash welding based on dynamic spatiotemporal warping[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 52-58. DOI: 10.12073/j.hjxb.2019400071
    [2]ZHANG Hongjie, ZHANG Jianye, SUI Xiuwu. Quality assessment for resistance spot welding based on Bayesian image recognition technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(1): 109-112.
    [3]LI Xiangwei, ZHAO Wenzhong, ZHENG Chengde. Weld fatigue life assessment based on fuzzy quality evaluation model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (8): 49-52.
    [4]JI Chuntao, LUO Xianxing, Deng Lipeng. Acquisition and analysis of resistance spot welding quality characteristics[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (6): 43-46.
    [5]ZHANG Hongjie, HOU Yanyan. Quality evaluation of the resistance spot welding based on PCASVM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 97-100.
    [6]MENG Fanjun, ZHU Sheng, CAO Yong, LIANG Yuanyuan. Fuzzy synthesis estimation of bead surface quality for pulse MAG welding prototyping[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 25-28.
    [7]PAN Cunhai, DU Sumei, SONG Yonglun. Displacement signal time-frequency domain analysis and quality judgment of aluminum alloy resistance spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (7): 33-36.
    [8]ZHANG Peng-xian, ZHANG Hong-jie, MA Yue-zhou, CHEN Jian-hong. On-line quality estimation of resistance spot welding based on extraction of signals feature[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (9): 52-57.
    [9]WANG Jian-jun, YANG Xue-qin, LIN Tao, CHEN Shan-ben. Pattern Recognition of Top-Side Pool Image in Aluminum Alloy TIG Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (5): 73-76.
    [10]ZHANG Zhong-dian, LI Dong-qing, YIN Xiao-hui. Study on Spot Welding Quality Monitoring Models by Linear Regression Theory[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (4): 31-35.

Catalog

    Article views (291) PDF downloads (132) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return