Advanced Search
HUANG Jiankang, SHI Yu, LU Lihui, ZHU Ming, FAN Ding. Weld width control of double pulsed MIG welding for aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (5): 13-16.
Citation: HUANG Jiankang, SHI Yu, LU Lihui, ZHU Ming, FAN Ding. Weld width control of double pulsed MIG welding for aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (5): 13-16.

Weld width control of double pulsed MIG welding for aluminum alloy

More Information
  • Received Date: February 07, 2010
  • Based on visual real-time sensor,a method to control the weld width was proposed to solve the problems of weld appearance in the welding process of aluminum alloy plate with constant welding parameters,which include the weld width broadening and bead subsidence due to the strong heat accumulation effect.The width was controlled by the heat input,which was realized by changing the duty cycle of the double pulses.The rapid prototype system with close loop control was established based on Labview visual sensor and xPC target real-time object environment.The results show that the system of visual sensor and rapid prototype have quick response performance.The heat input can be effectively reduced by regulating the procedure of the cyclical double pulses,the weld width is well controlled,and weld appearance is good.
  • Related Articles

    [1]WU Kaiyuan, HE Zuwei, LIANG Zhuoyong, HUANG Xi. Double pulse welding method for twin-wire pulsed MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(5): 53-57. DOI: 10.12073/j.hjxb.20170512
    [2]WU Kaiyuan, ZHANG Tao, HE Zuwei, LI Huajia. STM32 based power supply system for integrative twin-wire pulsed MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(11): 25-28.
    [3]LÜ Yan, TIAN Xincheng, LIANG Jun. Decoupling control design and simulation of aluminum alloy pulsed MIG welding based on dynamic PLS framework[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (6): 17-20.
    [4]LU Lihui, FAN Ding, HUANG Jiankang, ZHU Ming, SHI Yu. Study on arc length control system for pulsed MIG welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (9): 53-56.
    [5]LU Lihui, SHI Yu, HUANG Jiankang, FAN Jiawei, FAN Ding. Vision sensing and control for wire extension in pulsed MIG welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (7): 63-66.
    [6]HUANG Jiankang, SHI Yu, LU Lihui, ZHU Ming, FAN Ding. Weld width control of double pulsed MIG welding for aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (5): 13-16.
    [7]SHA Deshang, Liao Xiaozhong. Full digital control of I/I mode pulsed MIG welding based on triple closed loop control[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 5-7,12.
    [8]PENG Haiyan, HUANG Shisheng, WU Kaiyuan, WANG Zhenmin. Digital control system based on DSP for pulsed MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (9): 63-66.
    [9]SHI Yu, XUE Cheng, FAN Ding, LI Jianjun. Modeling and simulation of decoupling control system of aluminum pulsed MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (5): 9-12.
    [10]YANG Li-jun, LI Huan, HU Sheng-gang, LI Jun-yue. Pulsed MIG Welding Inverter Power Source by Spectral and Control System[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (1): 41-44.

Catalog

    Article views (202) PDF downloads (111) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return