Advanced Search
SHI Yu, XUE Cheng, FAN Ding, LI Jianjun. Modeling and simulation of decoupling control system of aluminum pulsed MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (5): 9-12.
Citation: SHI Yu, XUE Cheng, FAN Ding, LI Jianjun. Modeling and simulation of decoupling control system of aluminum pulsed MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (5): 9-12.

Modeling and simulation of decoupling control system of aluminum pulsed MIG welding

More Information
  • Received Date: July 15, 2007
  • In aluminum pulsed MIG welding, too much coupled welding parameters influence the stabilization of control sy stem of welding process.In order to solve above problem, the multi-input multi-output (MIMO)control model of aluminum pulsed MIG welding was presented.Based on thisMIMO model, a neural network inverse plant decoupling control system with the neural network PID controller was designed to control welding process.The structure and the principle of this control system were given, and the characteristics of control system were analyzed.The simulation results show that the satisfied dynamic and static performance had been obtained.It provides the theoretical basis to realize the process control in aluminum pulsedMIG welding.
  • Related Articles

    [1]MA Jingping, CAO Rui, ZHOU Xin. Development on improving fatigue life of high strength steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(10): 115-128. DOI: 10.12073/j.hjxb.20230711001
    [2]YIN Chengjiang, SONG Tianmin, LI Wanli. Effect of high-temperature welding on fatigue life of 2.25Cr1Mo steel joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(4): 106-108.
    [3]SUN Chengzhi, CAO Guangjun. Fatigue life simulation of spot weld based on equivalent structure stresses[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (1): 105-108.
    [4]ZHANG Liang, XUE Songbai, HAN Zongjie, LU Fangyan, YU Shenglin, LAI Zhongmin. Fatigue life prediction of SnAgCu soldered joints of FCBGA device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 85-88.
    [5]WU Liangchen, WANG Dongpo, DENG Caiyan, WANG Kang. Fatigue properties of welded joints of 16Mn steel in super long life region[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (3): 117-120.
    [6]DING Yanchuang, ZHAO Wenzhong. Stiffness coordination strategy for increasing fatigue life and its application in welded structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 31-34.
    [7]Li Zhen, Zheng Xiulin. Prediction of Fatigue Life for Peened Butt Welds of 16Mn Steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1997, (3): 151-158.
    [8]Lü Baotong, Zheng Xiulin. Fatigue life prediction for butt welds of 30CrMnSiNi2A steel containing welding delect[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1994, (4): 241-247.
    [9]Ling Chao, Zheng Xiulin. Overloading effect upon fatigue life of 16Mn steel butt welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (4): 247-251.
    [10]Xing Guochen, Fang Dexin. INCREASING FATIGUE LIFE OF WELDED FRAME BOGIE FOR RAILWAY COACH[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1990, (3): 181-185.

Catalog

    Article views (182) PDF downloads (74) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return