Advanced Search
WANG Da yong, FENG Ji cai. Obtaining of Young Equation by Principle of Energy and Establishment of Wetting Angle Model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (6): 59-61.
Citation: WANG Da yong, FENG Ji cai. Obtaining of Young Equation by Principle of Energy and Establishment of Wetting Angle Model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (6): 59-61.

Obtaining of Young Equation by Principle of Energy and Establishment of Wetting Angle Model

More Information
  • Received Date: April 16, 2002
  • Young equation is concluded according to the mechanical equilibrium of the physical model.The article concludes the relation between surface tension and wetting angle by the principle of energy,as a result,both the conclusion concluded and the Young equation are unanimous.Wetting angle is an important factor to evaluate wetting ability of filler material.However,it is difficult to obtain the value of surface tension of materials and then solve the value of wetting angle by Young equation.If we measure wetting angle by instrument,the experimental cost will rise and experimental efficiency will decline.In this study,we establish a simple mathematical model of calculating wetting angle and compare the calculated results with the measured results,and the result shows that the distinction of them is little.
  • Related Articles

    [1]GU Yufen, BIAN Chunhong, LI Chunkai, SHI Yu. Effect of different component active fluxes on surface tension of weld pool in stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(6): 48-53. DOI: 10.12073/j.hjxb.20190911001
    [2]LI Liqun, HAO Yu, PENG Jin. Effect of surface tension on flow in laser deep penetration welding molten pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 13-19. DOI: 10.12073/j.hjxb.2019400034
    [3]ZHANG Yong, SUN Linlin, TANG Jiacheng, TANG Mingyuan. Effect on liquid metal surface tension and TIG weld bead properties of Q235 steel by high silicon flyash[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 92-96. DOI: 10.12073/j.hjxb.2018390130
    [4]SHEN Yanxu, LIN Tiesong, HE Peng, ZHU Ming, ZHANG Zhihui, LU Fengjiao. Sn behavior over Si3N4/2024Al composite surface in wetting test of Sn-Zn alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (7): 59-62.
    [5]LIU Mnig-zhi, ZHANG Guang-xian, Nie Li-li, Zhang Zhao-shan. Dynamic process of surface tension transformation (STT)[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (5): 60-64,80.
    [6]ZHANG Guang-xian, ZHOU Zeng-da, CHEN Ren-fu, YIN Hai, LIU Ming-zhi. Research on simulation for surface tension transformation in CO2 arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (4): 68-72.
    [7]ZHANG Guang-xian, ZOU Zeng-da, YIN Hai, LI si-hai, Li Zhong-you. Surface tension transformation in CO2 arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (1): 80-84.
    [8]WANG Xin-zhi, CHEN Wu-zhu, ZHAO Zi-xiang. Self-equalizing Transition between Electro-magnetic Force and Surface Tension in Short Circuit CO2 Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (4): 24-28.
    [9]LEI Yong-ping, SHI Yao-wu, Hidekazu Murakawa. Infuence of Surface Tension and Alloy Vaporation on Heating Surface Temperature during Laser Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (3): 13-16.
    [10]Meng Qingsen, Wang Bao, Lu Wenxiong. Effect of flux materials on surface tension of drops of electrodes[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1993, (2): 63-68.

Catalog

    Article views (450) PDF downloads (115) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return