Advanced Search
GU Yufen, BIAN Chunhong, LI Chunkai, SHI Yu. Effect of different component active fluxes on surface tension of weld pool in stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(6): 48-53. DOI: 10.12073/j.hjxb.20190911001
Citation: GU Yufen, BIAN Chunhong, LI Chunkai, SHI Yu. Effect of different component active fluxes on surface tension of weld pool in stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(6): 48-53. DOI: 10.12073/j.hjxb.20190911001

Effect of different component active fluxes on surface tension of weld pool in stainless steel

More Information
  • Received Date: September 10, 2019
  • Available Online: July 12, 2020
  • Acquiring the basic data of the surface tension of molten metal under welding condition is of great significance for understanding the physical mechanism of weld process,such as metal flow behavior, heat transfer mechanism and defect formation.However, real-time measurement is very difficult. The oscillating frequency of weld pool in 304 stainless steel with single component (TiO2 ,CaF2 ) and two component (30%TiO2 + 70%CaF2 , 70%TiO2 + 30%CaF2) activating fluxes was measured by laser-vision method. According to the analytical model of the characteristic frequency and surface tension of the molten metal in a specific mode the surface tension of the molten metal was calculated. The influence of different components of the activating fluxes on the average surface tension of the molten metal is analyzed. Experimental results revealed that TiO2 activating flux can convert the surface tension gradient and change the flow direction of the molten metal. CaF2 activating flux can reduce the absolute value of surface tension and increase the flow velocity of the weld pool. The increase of penetration in two component activating flux is the result of the combination of the increase of the flow velocity of the weld pool and the change of surface tension temperature gradient.
  • Benedetto F E, Zolotucho H, Prado M O. Critical assessment of the surface tension determined by the maximum pressure bubble method[J]. Materials Research, 2015, 18(1): 9 − 14. doi: 10.1590/1516-1439.232513
    Gurevich S M, Zamokov V N, Kushirenko N A. Improving the pene-tration of titanium alloys when they are welded by tungsten arc process[J]. Automatic Welding, 1965, 18(9): 1 − 5.
    董文超, 陆善平, 李殿中, 等. 焊接电弧与活性组元对TIG焊熔池形貌影响的数值模拟[J]. 焊接学报, 2009, 30(11): 49 − 52. doi: 10.3321/j.issn:0253-360X.2009.11.013

    Dong Wenchao, Lu Shanping, Li Dianzhong, et al. Numerical simulation of the influence of welding arc and active component on the morphology of TIG welding pool[J]. Transactions of the China Welding Institution, 2009, 30(11): 49 − 52. doi: 10.3321/j.issn:0253-360X.2009.11.013
    马壮, 于秀秀, 时海芳, 等. 粉煤灰A-TIG熔池流动行为及焊缝性能分析[J]. 焊接学报, 2017, 38(9): 65 − 69.

    Ma Zhuang, Yu Xiuxiu, Shi Haifang, et al. Analysis of flow behaviar and weld performance fly ash A-TIG molten pool[J]. Transactions of the China Welding Institution, 2017, 38(9): 65 − 69.
    Hung Yong, Ren Cao, Ren Qinglong. The element transfor behavior ofgas pool coupled activating TIG welding[J]. China Welding, 2018, 27(4): 1 − 9.
    Li Chunkai, Shi Yu, Gu Yufen, et al. Effect of oxide on surface tension of molten metal[J]. Rsc Advances, 2017, 7(85): 53941 − 53950. doi: 10.3321/j.issn:0253-360X.2009.02.010
    Xiao Y, Den Ouden G. Weld pool oscillation during GTA welding of mild steel[J]. Weld Journal, 1993, 72: 428s − 434s.
    Shi Y, Li C K, Du Leim, et al. Frequency characteristics of weld pool oscillation in pulsed gas tungsten arc welding[J]. Journal of Manufacturing Processes, 2016, 24: 145 − 151. doi: 10.1016/j.jmapro.2016.08.010
    石玗, 李春凯, 顾玉芬, 等. 脉冲钨极气体保护焊熔池振荡频率激光视觉测量[J]. 上海交通大学学报, 2016, 50(12): 1910 − 1914.

    Shi Yu, Li Chunkai, Gu Yufen, et al. Laser vision measurement of oscillation frequency of pulsed tungsten gas shielded welding pool[J]. Journal of Shanghai Jiaotong University, 2016, 50(12): 1910 − 1914.
    Traidia A, Roger F. Numerical and experimental study of arc and weld pool behaviour for pulsed current GTA welding[J]. International Journal of Heat & Mass Transfer, 2011, 54(9): 2163 − 2179.
    Li Chunkai, Shi Yu, Gu Yufen, et al. Effects of different activating fluxes on the surface tension of molten metal in gas tungsten arc welding[J]. Journal of Manufacturing Processes, 2018, 32: 395 − 402. doi: 10.1016/j.jmapro.2018.03.001
    Leconte S, Paillard P, Chapelle P, et al. Effects of flux containing fluorides on TIG welding process[J]. Science & Technology of Welding & Joining, 2013, 12(2): 120 − 126.
    Lu Shanping, Fujii H, Sugiyama H, et al. Mechanism and optimization of oxide fluxes for deep penetration in gas tungsten arc welding[J]. Metallurgical & Materials Transactions A, 2003, 34(9): 1901 − 1907.
  • Related Articles

    [1]LU Jinbin, HE Yaxun, ZHANG Wangxi, LI Hua, ZHAO Bin, YIN Zhen, MA Jia. Analysis on vacuum brazing diamond using CuSnTiNi[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(6): 125-128.
    [2]WANG Bo, XIAO Bing, ZHU Yongwei, SHAO Mingjia. Vacuum brazing of diamond with large-grained nickel-based alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 85-88,93.
    [3]YANG Zhibo, XU Jiuhua, LIU Aiju. Analysis on interfacial microstructure of laser brazing diamond grits[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (10): 9-12.
    [4]LU Jinbin, XU Jiuhua. Microstructure of interface between Ag-Cu-Ti brazing filler metal and diamond[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (8): 29-32.
    [5]SUN Feng-lian, ZHAO Mi, LI Dan, GU Feng. Interfacial reaction layers and microstructure of brazed joint of CVD diamond film[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (9): 70-72.
    [6]MA Bo-jiang, XU Hong-jun, FU Yu-can, XIAO Bing, XU Jiu-hua. Interfacial characteristics of diamond brazed by high-frequency induction[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (3): 50-54.
    [7]MENG Wei-ru, XU Ke-wei, YANG Ji-jun, NAN Jun-ma. Adaptability of brazing filling metal used for monolayer diamond tools with vacuum furnace brazing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 80-82.
    [8]XIAO Bing, XU Hong-jun, WU Zhi-bin, XU Xi-peng. Furnace Brazing of Diamond Grinding Wheel with Ni-Cr Alloy under Vacuum Atmosphere[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (2): 23-26.
    [9]WU Zhi-bin, XU Hong-jun, XIAO Bing. Experimental Investigation on Induction Brazing of Diamond Grinding Wheel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (1): 24-26.
    [10]Sun Fenglian, Yu Yandong, Sun Pingzhong, Zhang Jie, Zhang Jiuhai, Xu Yonghua. Solid-state Bonding of Diamond to Co-Si Alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1997, (3): 177-181.
  • Cited by

    Periodical cited type(3)

    1. 徐东,金天,王朋波,程战. Gd改性Ni-Cr钎料钎焊金刚石组织和性能研究. 材料导报. 2024(19): 181-185 .
    2. 王楠,张雷,纠永涛,冯帅帅,程战,秦建,陈继,李家茂,徐东. 钎焊温度对Cu-Sn-Ti-Ga钎料钎焊金刚石接头组织及性能的影响. 材料研究与应用. 2023(06): 1125-1133 .
    3. 朱晨颖,孙志鹏,王宇. 感应钎涂金刚石/镍基合金复合涂层的性能. 焊接学报. 2022(02): 106-112+120 . 本站查看

    Other cited types(3)

Catalog

    Article views (479) PDF downloads (20) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return