Advanced Search
LIU Mnig-zhi, ZHANG Guang-xian, Nie Li-li, Zhang Zhao-shan. Dynamic process of surface tension transformation (STT)[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (5): 60-64,80.
Citation: LIU Mnig-zhi, ZHANG Guang-xian, Nie Li-li, Zhang Zhao-shan. Dynamic process of surface tension transformation (STT)[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (5): 60-64,80.

Dynamic process of surface tension transformation (STT)

More Information
  • Received Date: December 27, 2002
  • By analyzing the short circuit transformation, the force acting on droplets and the control theory of the STT, a mathematical model and a simulation model of the STT dynamic process were established. It analyzes systemically the influence of wire feed speed, melting rate and the variations of droplet on arc length, and founds its mathematical model.This paper also compares the influences of different control mode of the current on the dynamic characteristic of the welding system in the STT periods. Different simulation models were taken into experiment, the simulated results corresponds with the experiment results, which proved the SIM-ULINK models to be correct. The results show that output control mode can reduce the current more rapidly to meet the need of STF control system than invert-loop control mode.
  • Related Articles

    [1]BAO Liangliang, WANG Yong, ZHANG Hongjie, XU Liang, HAN Tao. Welding thermal cycle of the laser-arc hybrid welding of the EQ70 steel and its effects on the microstructure evolution of the heat affected zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 26-33. DOI: 10.12073/j.hjxb.20201207002
    [2]CUI Bing1,2, PENG Yun2, PENG Mengdu2, AN Tongbang2. Effects of weld thermal cycle on microstructure and properties of heataffected zone of Q890 processed steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 35-39. DOI: 10.12073/j.hjxb.20150427004
    [3]LIU Haodong, HU Fangyou, CUI Aiyong, LI Hongbo, HUANG Fei. Experimental on thermal cycle of laser welding with ultrasonic processing across different phases[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 13-17.
    [4]WU Dong, LU Shanping, LI Dianzhong. Effect of welding thermal cycle on high temperature mechanical property of Ni-Fe base superalloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(9): 69-72.
    [5]WANG Zheng, GUI Chibin, CHEN Wenjun. Numerical analysis of hydrogen traps thermal desorption in weld thermal cycle[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (7): 100-104.
    [6]LI Xiaoquan, TENG Yalan, CHU Yajie, YANG Zonghui. Influence of welding thermal cycle on micro-structural brittleness of T92 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (3): 9-12.
    [7]HU Yanhua, CHEN Furong, XIE Ruijun, LI Haitao. In-situ detection of weld metal thermal cycle of 10CrMo910 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (10): 105-107.
    [8]YAO Shang-wei, ZHAO Lu-yu, XU Ke, WANG Ren-fu. Effect of welding thermal cycle on toughness of continuous cast-ing steel center[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (10): 97-100.
    [9]XU Xue-li, XIN Xi-xian, SHI Kai, ZHOU Yong. Influence of welding thermal cycle on toughness and microstructure in grain-coarsening region of X80 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (8): 69-72.
    [10]Yin Shike, Wang Yishan, Guo Huaili. Influnce of weld thermal cycle on properties of 10Ni5CrMoV steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1994, (3): 147-153.

Catalog

    Article views (343) PDF downloads (64) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return