Advanced Search
WANG Chun-ming, YU Fu-lin, DUAN Ai-qin, HU Lun-jin. Relationship Between Penetration Depth and Plasma Optic Signal During Partial-Penetration Laser Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (5): 45-48,56.
Citation: WANG Chun-ming, YU Fu-lin, DUAN Ai-qin, HU Lun-jin. Relationship Between Penetration Depth and Plasma Optic Signal During Partial-Penetration Laser Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (5): 45-48,56.

Relationship Between Penetration Depth and Plasma Optic Signal During Partial-Penetration Laser Welding

More Information
  • Received Date: March 31, 2002
  • The penetration depth is one of the most important quality parameters in partial penetration laser welding,and therefore real time monitoring for penetration depth becomes extremely significants.A system was built for real time monitoring the penetration depth of laser welding by measuring and analyzing the plasma optical signal induced by laser.The experiments and analyses show that if increasing the laser power or reducing the speed,the penetration depth is increased and the plasma optical intensity is also increased.A characteristic frequency component exists in the signal from the amplitude spectrum analysis for a whole weld seam which is welded under the same welding parameters,what's more,the characteristic frequency falls as the welding heat input increases.When an 8% fluctuation in the penetration depth is caused by random unstable factors in the same weld seam,the optical signal amplitude decreases rapidly,and there is no characteristic spectrum line in the corresponding signal amplitude spectrum.
  • Related Articles

    [1]WANG Fei, SHENG Zhongxi, CHEN Yi, CHEN Huabin. Welding robot simulation and multi-layer and multi-channel path planning based on WebGL[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 27-32. DOI: 10.12073/j.hjxb.20220123001
    [2]YING Zhiding, LIN Qijun, LIN Jianpin, GU Lingyan, YAN Song. Simulation research of plates collision in process of electromagnetic welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 27-30. DOI: 10.12073/j.hjxb.20170406
    [3]LI Xiaodong, LI Chunguang, ZHU Zhimin, XU Fenglin. Engineering applications of MIG welding deformation simulation of aluminum alloy sheet[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(2): 104-108.
    [4]DUAN Bin, ZHANG Chenghui, SUN Tongjing, ZHANG Guangxian, GUO Min. Modeling and simulation of pulsed welding inverter[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (4): 57-60,64.
    [5]HONG Bo, HUANG Jun, PAN Jiluan, QU Yuebo. Modeling and simulation of weaving arc in submerged arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 25-28.
    [6]JI Chuntao, PENG Xin, LUO Xianxing, DENG Lipeng. Medelling and simulation of resistance spot welding inverter[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (4): 21-24.
    [7]ZENG Min, CAO Biao, HUANG Shi-sheng, LÜ Xiao-qing. Simulation research on waveform control high-speed welding system[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (6): 55-59.
    [8]SUI Bo, DU Dong, CHANG Bao-hua, ZHAI Feng, WU Ting. Visual information model for assembly process of body-in-white[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (5): 25-28.
    [9]GAI Zhi-wu, LI Dong-sheng, MA Yan, PU Chen-hua. Simulation Study of Shielded Metal Arc Welding Inverter Using Simulink Software[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (5): 31-34.
    [10]Shan Ping, Zhang Zaijie. Simulation Study on Preheating Process of Pulse Flash Butt Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1997, (2): 29-33.
  • Cited by

    Periodical cited type(14)

    1. 余径舟,何其昌,时轮,杨冬梅. 基于深度学习的白车身焊接路径智能规划方法. 机械设计与研究. 2024(03): 116-121 .
    2. 李志刚,杨翔,祝林,魏成法. 基于Stateflow的焊接机器人协同规划策略. 现代制造工程. 2024(11): 60-65+79 .
    3. 王金虎,王明伟,张文超. 汽车白车身多机器人焊接路径规划策略. 机械设计与研究. 2023(06): 36-42+51 .
    4. 龚正,涂福泉,李圣伟. 基于改进狼群算法的焊接机器人路径规划. 传感器与微系统. 2022(12): 122-125 .
    5. 曹家勇,吴沛华,吕文壮,裴跃翔. 汽车车身多机器人焊接路径规划和Tecnomatix虚拟仿真. 机械设计与研究. 2021(05): 21-26+40 .
    6. 李杰. 机器人焊接路径规划. 电子世界. 2019(23): 158-159 .
    7. 王春华,邱立鹏,潘德文. 改进蚁群算法的机器人焊接路径规划. 传感器与微系统. 2017(02): 75-77 .
    8. 王培博. 智能蚂蚁算法应用的最新进展. 电脑知识与技术. 2017(04): 183-185 .
    9. 乐英,岳艳波. 基于改进粒子群算法的白车身焊接路径优化. 中国工程机械学报. 2017(02): 99-106 .
    10. 侯仰强,王天琪,李亮玉,张志臣,赵娜. 基于蚁群算法-粒子群算法的白车身侧围点焊机器人路径规划. 中国机械工程. 2017(24): 2990-2994 .
    11. 冯超钰,王杰,张梦超. 基于ACO_PSO的机器人路径规划和ROBCAD运动仿真. 组合机床与自动化加工技术. 2017(05): 111-113+125 .
    12. 金嘉琦,刘畅,徐振伟. 基于改进蚁群算法的焊接机器人路径规划. 重型机械. 2017(01): 44-46 .
    13. 张胜跃,卿黎,冯秋霞,张宇栋. 基于改进蚁群算法的焊接接头优化分析. 机械强度. 2016(03): 585-590 .
    14. 崔洪刚,汪永超,唐浩. 白车身焊接技术的研究进展. 制造技术与机床. 2016(08): 37-40 .

    Other cited types(13)

Catalog

    Article views (187) PDF downloads (59) Cited by(27)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return