Advanced Search
ZHANG Junjie, XIA Yong, YAN Yaotian, CAO Jian, QI Junlei. Brazing and thermal packaging process of high thermal conductivity graphite/aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(2): 1-6, 54. DOI: 10.12073/j.hjxb.20240907002
Citation: ZHANG Junjie, XIA Yong, YAN Yaotian, CAO Jian, QI Junlei. Brazing and thermal packaging process of high thermal conductivity graphite/aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(2): 1-6, 54. DOI: 10.12073/j.hjxb.20240907002

Brazing and thermal packaging process of high thermal conductivity graphite/aluminum alloy

More Information
  • Received Date: September 06, 2024
  • Available Online: February 23, 2025
  • In order to achieve reliable low-temperature brazing of high-thermal-conductivity graphite and aluminum alloy (5A06), Sn-Pb solder was used for brazing, and its spreading behavior on the base material was studied. The results show that metallization of the high-thermal-conductivity graphite surface effectively improves the wettability between metal and graphite, mitigates interfacial issues caused by mismatched thermal expansion coefficients, and reduces interfacial thermal resistance due to phonon scattering. Under optimized process conditions—Ag-Cu-Ti solder layer thickness of 0.2 mm, brazing temperature of 860 ℃, and holding time of 10 min for the metallization process, along with Sn-Pb solder brazing at 210 ℃ with a holding time of 15 min—the overall thermal conductivity of the composite structure was significantly enhanced. Furthermore, a heat spreader was designed and tested to evaluate its thermal performance. Experimental results show that a strip-shaped heat spreader with dimensions of 210 mm× 25 mm× 3.5 mm achieves a thermal conductivity of up to 558 W/(m·K), while a larger heat spreader with dimensions of 233.4 mm× 200 mm× 24 mm, suitable for large-scale integrated electronic devices, reaches a maximum thermal conductivity of 460 W/(m·K). This study not only demonstrates the potential of brazing technology in improving thermal management efficiency but also provides a novel material solution for the thermal management of high-performance electronic devices.

  • [1]
    Govindaraju N, Singh R N. Processing of nanocrystalline diamond thin films for thermal management of wide-bandgap semiconductor power electronics[J]. Materials Science and Engineering: B, 2011, 176(14): 1058 − 1072. doi: 10.1016/j.mseb.2011.05.042
    [2]
    王娟娟, 余英丰, 景华, 等. 微电子封装材料及其可靠性研究进展[J]. 中国胶粘剂, 2023, 32(2): 25 − 41,50.

    Wang Juanjuan, Yu Yingfeng, Jing Hua, et al. Research progress in microelectronic packaging materials and their reliability[J]. China Adhesives, 2023, 32(2): 25 − 41,50.
    [3]
    Vianco P T. A review of interface microstructures in electronic packaging applications: Brazing and welding technologies[J]. Jom, 2022, 74(9): 3557 − 77. doi: 10.1007/s11837-022-05308-x
    [4]
    Miao W, Wang M. Importance of electron-phonon coupling in thermal transport in metal/semiconductor multilayer films[J]. International Journal of Heat and Mass Transfer, 2023, 200: 123538. doi: 10.1016/j.ijheatmasstransfer.2022.123538
    [5]
    Wu Y J, Yagi Takashi, Xu Y B. Interfacial thermal resistance of metal-nonmetal interfaces under bidirectional heat fluxes[J]. International Journal of Heat and Mass Transfer, 2021, 180: 121766. doi: 10.1016/j.ijheatmasstransfer.2021.121766
    [6]
    孔德浩, 张铭雨, 季雨凯, 等. 石墨与金属焊接技术研究现状[J]. 焊接, 2024(1): 73 − 80. doi: 10.12073/j.hj.20230619006

    Kong Dehao, Zhang Mingyu, Ji Yukai, et al. Research status of joining between graphite and metals[J]. Welding & Joining, 2024(1): 73 − 80. doi: 10.12073/j.hj.20230619006
    [7]
    Guo W, Hu Y, Chen X, et al. Super-thick highly thermally conductive graphite/Sn laminated composites assembled by active Ti-containing Sn-Ag-Ti filler metals[J]. Diamond and Related Materials, 2023, 138: 110253. doi: 10.1016/j.diamond.2023.110253
    [8]
    Tan Z Q, Li Z Q, Xiong D B, et al. A predictive model for interfacial thermal conductance in surface metalized diamond aluminum matrix composites[J]. Materials & Design, 2014, 55: 257 − 262.
    [9]
    Chen Z B, Bian H, Hu S P, et al. Surface modification on wetting and vacuum brazing behavior of graphite using AgCu filler metal[J]. Surface and Coatings Technology, 2018, 348: 104 − 110. doi: 10.1016/j.surfcoat.2018.05.039
    [10]
    Zhao J W, Zhao R, Huo Y K, et al. Effects of surface roughness, temperature, and pressure on interface thermal resistance of thermal interface materials[J]. International Journal of Heat and Mass Transfer, 2019, 140: 705 − 716. doi: 10.1016/j.ijheatmasstransfer.2019.06.045
    [11]
    Zhao Y, Sugio K, Choi Y, et al. Effect of anisotropic thermal conductivity of graphite flakes and interfacial thermal resistance on the effective thermal conductivity of graphite flakes/aluminum composites[J]. Materials Transactions, 2021, 62(1): 98 − 104. doi: 10.2320/matertrans.MT-M2020071
    [12]
    Zhu P, Zhang Q, Qu S, et al. Effect of interface structure on thermal conductivity and stability of diamond/aluminum composites[J]. Composites Part A: Applied Science and Manufacturing, 2022, 162: 107161. doi: 10.1016/j.compositesa.2022.107161
  • Related Articles

    [1]BA Peipei, DONG Zhihong, ZHANG Wei, PENG Xiao. Microstructure and mechanical properties of 12CrNi2 alloy steel manufactured by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 8-17. DOI: 10.12073/j.hjxb.20210323003
    [2]XIE Yujiang, YANG Yule, CHI Changtai. Microstructures and mechanical properties of laser metal deposited 24CrNiMo steel in different atmospheres[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 19-24. DOI: 10.12073/j.hjxb.20190905001
    [3]HUANG Jie, XUE Songbai, GU Ronghai, WANG Bo, LIN Zhongqiang. Effect of Si on microstructures and properties of SAl5356 aluminum alloy wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(11): 69-72.
    [4]WU Bingzhi, XU Yujun, AN Hongliang, SUN Jingtao. Property and microstructure of deposited metal with high strength wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(4): 53-57.
    [5]ZHANG Man, WANG Pengfei, ZHANG Lincai, LIN Yuebin. Microstructure and mechanical properties of Cu/Al joint brazed with Zn-Al-Ag filler metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (9): 55-58.
    [6]SHEN Zhikang, YANG Xinqi, ZHANG Zhaohua, YIN Yuhuan. Analysis of microstructure and mechanical properties of refill friction stir spot welded aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (6): 73-76.
    [7]YANG Changyong, XU Jiuhua, DING Wenfeng, FU Yucan, CHEN Zhenzhen. Microstructure and mechanical property of Ag-Cu-Ti fillers added with rare earth lanthanum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (1): 67-70,74.
    [8]ZHANG Weihua, QIU Xiaoming, CHEN Xiaowei, ZHAO Xihua, SUN Daqian, LI Yongqiang. Microstructure and mechanical property of transient liquid phase bonded aluminum silicon alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (2): 121-124.
    [9]HAN Xianpeng, XUE Songbai, Gu Liyong, GU Wenhua, ZHANG Xin. Effect of gallium on microstructure and mechanical properties of Ag-Cu-Zn filler metals[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (2): 45-48.
    [10]YAO Wei, GONG Shui-li, CHEN Li. Microstructure and mechanical properties of laser welded joint of titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 69-72,76.

Catalog

    Article views (184) PDF downloads (72) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return