Citation: | JIA Ruiyan, LI Haichao, WEI Fangkai, XU Yong, ZHOU Yufei. Magnetic pole weld identification and robot trajectory generation technology based on 3D point cloud[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 50-54. DOI: 10.12073/j.hjxb.20240719002 |
Aiming at the problems of low efficiency and poor accuracy of teaching programming in complex welds with variable magnetic pole length and gap of large hydropower generators, a technology of welding seam identification and robot track generation without teaching was developed based on grating visual sensing. A grating sensor installed at the end of the robot was used to obtain the point cloud of the magnetic pole weld at different positions. A point cloud registration algorithm combining the robot tool pose transformation matrix and iterative closest point algorithm (ICP) was proposed to obtain the complete point cloud data of the large size magnetic pole weld. Based on random sampling consistency (RANSAC), a weld recognition algorithm was developed to realize the automatic generation of robot welding trajectories. The results show that the algorithm can identify a variety of complex magnetic pole welds with high recognition rate and strong anti-interference ability, and the average recognition error is with in ± 0.4 mm, which meets the welding requirements.
[1] |
王慧. 向心磁极铁托板焊接质量的分析[J]. 防爆电机, 2016, 51(4): 52 − 54. doi: 10.3969/J.ISSN.1008-7281.2016.04.17
Wang Hui. Analysis of welding quality of centripetal pole iron plate[J]. Explosion-Proof Electric Machine, 2016, 51(4): 52 − 54. doi: 10.3969/J.ISSN.1008-7281.2016.04.17
|
[2] |
魏方锴, 贾瑞燕, 周宇飞, 等. 一种基于视觉定位的磁极铁托板自动化焊接方法, CN202210543971.5 [P]. 2024-02-13.
Wei Fangkai, Jia Ruiyan, Zhou Yufei, et al. An automatic welding method of magnetic pole iron plate based on visual positioning, CN202210543971.5[P]. 2024-02-13.
|
[3] |
Li G, Hong Y, Gao J, et al. Welding seam trajectory recognition for automated skip welding guidance of a spatially intermittent welding seam based on laser vision sensor[J]. Sensors, 2020, 20(13): 36 − 57.
|
[4] |
郭忠峰, 刘俊池, 杨钧麟. 基于关键点检测方法的焊缝识别[J]. 焊接学报, 2024, 45(1): 88 − 93. doi: 10.12073/j.hjxb.20230204001
Guo Zhongfeng, Liu Junchi, Yang Junlin. Weld identification based on key point detection method[J]. Transactions of the China Welding Institution, 2024, 45(1): 88 − 93. doi: 10.12073/j.hjxb.20230204001
|
[5] |
修延飞, 李海超, 胡广泽, 等. 一种用于穿孔塞焊焊缝特征提取的视觉识别算法[J]. 焊接学报, 2020, 41(2): 75 − 79. doi: 10.12073/j.hjxb.20190927002
Xiu Yanfei, Li Haichao, Hu Guangze, et al. A visual recognition algorithm for feature extraction of perforated plug welding seams[J]. Transactions of the China Welding Institution, 2020, 41(2): 75 − 79. doi: 10.12073/j.hjxb.20190927002
|
[6] |
Zhang K, Yan M, Huang T, et al. 3D reconstruction of complex spatial weld seam for autonomous welding by laser structured light scanning[J]. Journal of Manufacturing Processes, 2019, 39: 200 − 207. doi: 10.1016/j.jmapro.2019.02.010
|
[7] |
Tian Y Z, Liu H F, Li L, et al. Robust identification of weld seam based on region of interest operation[J]. Advances in Manufacturing, 2020, 8(4): 473 − 485. doi: 10.1007/s40436-020-00325-y
|
[8] |
梁志敏, 高旭, 任政, 等. 基于变分立体匹配算法的GMAW熔池形貌三维重建[J]. 焊接学报, 2024, 45(2): 61 − 66. doi: 10.12073/j.hjxb.20230224001
Liang Zhimin, Gao Xu, Ren Zheng, et al. Three-dimensional reconstruction of GMAW molten pool morphology based on variational stereo matching algorithm[J]. Transactions of the China Welding Institution, 2024, 45(2): 61 − 66. doi: 10.12073/j.hjxb.20230224001
|
[9] |
Zhang G, Zhang Y, Tuo S, et al. A novel seam tracking technique with a four-step method and experimental investigation of robotic welding oriented to complex welding seam[J]. Sensors, 2021, 21(9): 30 − 67.
|
[10] |
余佳杰, 周建平, 薛瑞雷, 等. 基于结构光视觉和光照模型的焊 缝表面质量检测[J]. 中国激光, 2022, 49(16): 2 − 4.
Yu Jiajie, Zhou Jianping, Xue Ruilei, et al. Weld surface quality detection based on structured light and illumination model[J]. Chinese Journal of Lasers, 2022, 49(16): 2 − 4.
|
[11] |
魏小保. 基于数字光栅投影的三维测量关键技术研究[D]. 杭州: 浙江大学, 2019.
Wei Xiaobao. Research on key technology of 3D measurement based on digital raster projection[D]. Hangzhou: Zhejiang University, 2019.
|
[12] |
王曦. 基于数字光栅投影结构光的三维重建技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
Wang Xi. Research on 3D reconstruction technique based on digital grating projection structured light[D]. Harbin: Harbin Institute of Technology, 2017.
|
[1] | HU Jiacheng, YU Shuangfei, ZHANG Tao, GUAN Yisheng, ZHU Haifei. Determination of welding torch space pose based on local point cloud of weld path points[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 86-92. DOI: 10.12073/j.hjxb.20230406002 |
[2] | SUN Lei, ZHANG Yi, CHEN Minghe, ZHANG Liang, MIAO Naiming. Finite element analysis of solder joint reliability of 3D packaging chip[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 49-53. DOI: 10.12073/j.hjxb.20201021002 |
[3] | HAN Lishuai, HUANG Chunyue, LIANG Ying, KUANG Bing, HUANG Genxin. Analysis of stress strain and shape size optimization of 3D micro-scale CSP solder joints in random vibration[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 64-70. DOI: 10.12073/j.hjxb.2019400156 |
[4] | XIONG Guoji, HUANG Chunyue, LIANG Ying, LI Tianming, TANG Wenliang, HUANG Wei. Optimization design of 3D-TSV interconnect structure under random vibration load based on orthogonal experiment and gray relational analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(7): 22-26. |
[5] | CHEN Haiyong, DU Xiaolin, DONG Yan. Tiny visual feature extraction of random changing weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 97-101. |
[6] | HUANG Chunyue, XIONG Guoji, LIANG Ying, SHAO Liangbin, HUANG Wei, LI Tianming. Study on stress distribution of 3D-TSV interconnect structure under random vibration load[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(11): 17-20. |
[7] | ZHANG Yu, LUO Zhen, TAN Hui, DUAN Rui, ZHANG Chengda. Hybrid 3D processing technology based on build-up welding and electrolytic machining[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 39-42. |
[8] | QI Xiubin. State-of-arts of visual sensing technology to monitor laser welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (2): 108-112. |
[9] | YU Xinghua, LIANG Zhimin, GAO Hongming, ZHANG Guangjun. Sparse point clouds fitting in 3D reconstruction for welding environment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 109-112. |
[10] | Li Heqi, Kenji Oshima. STUDY OF SAMPLING AND CONTROLLING MAG WELDING ARC LENGTH BY TV CAMERA[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1989, (4): 258-264. |