Advanced Search
HONG Yuxiang, XIE Xiangzhi, HE Xingxing, DU Dong, CHANG Baohua. Prediction of GTAW penetration state based on enhanced knowledge of dynamic morphology molten pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240115003
Citation: HONG Yuxiang, XIE Xiangzhi, HE Xingxing, DU Dong, CHANG Baohua. Prediction of GTAW penetration state based on enhanced knowledge of dynamic morphology molten pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240115003

Prediction of GTAW penetration state based on enhanced knowledge of dynamic morphology molten pool

More Information
  • Received Date: January 14, 2024
  • Available Online: April 01, 2025
  • To achieve online monitoring of welding penetration status, ensure weld quality, and promote the development of robotic intelligent technology, a knowledge-enhanced prediction method for Gas Tungsten Arc Welding (GTAW) penetration status based on molten pool dynamic deformation is proposed. High-speed, high-dynamic-range industrial cameras are employed to capture molten pool images, and the DeepLabv3 + semantic segmentation model is utilized for dynamic segmentation of the molten pool to obtain precise molten pool regions. On this basis, multi-frame molten pool contour image fusion is performed to describe the dynamic deformation of the molten pool during the welding process. The fused molten pool contour images and original molten pool images are combined and input into a CNN to learn pixel-level changes in the molten pool contours at the same location, guiding the CNN to predict penetration status. Experimental results demonstrate that the CNN enhanced with molten pool dynamic deformation knowledge can accurately identify three typical weld states: partial penetration, adequate penetration, and excessive penetration, achieving a classification accuracy of 97.1% with a single-frame prediction time of 0.86 ms. Compared to deep learning methods without the integration of expert knowledge on molten pool dynamic deformation features, this method exhibits higher robustness and accuracy in scenarios with limited sample data.

  • [1]
    周政, 王国庆, 宋建岭, 等. 2219铝合金不同气氛下TIG焊焊接接头组织性能[J]. 焊接学报, 2018, 39(7): 47 − 50. doi: 10.12073/j.hjxb.2018390173

    Zhou Zheng, Wang Guoqing, Song Jianlin, et al. Microstructure and mechanical properties of 2219aluminum alloys TIG welding welded joints in differentshielding gases[J]. Transactions of the China Welding Institution, 2018, 39(7): 47 − 50. doi: 10.12073/j.hjxb.2018390173
    [2]
    张志芬, 杨哲, 任文静, 等. 电弧光谱深度挖掘下的铝合金焊接过程状态检测[J]. 焊接学报, 2019, 40(1): 19 − 25. doi: 10.12073/j.hjxb.2019400005

    Zhang Zhifen, Yang Zhe, Ren Wenjing, et al. Condition detection in Al alloy welding process based on deep mining of arc spectrum[J]. Transactions of the China Welding Institution, 2019, 40(1): 19 − 25. doi: 10.12073/j.hjxb.2019400005
    [3]
    岳建锋, 龙新宇, 黄云龙, 等. 基于电弧声信号的窄间隙脉冲熔化极气体保护焊侧壁熔合状态在线识别研究[J]. 中国机械工工程, 1-8.

    Yue Jianfeng, Long Xinyu, Huang Yunlong, et al. On-line identification of narrow gap P-GMAW sidewall fusion state based on arc acoustic signa[J]. China Mechanical Engineering, 1–8.
    [4]
    Peng G, Chang B, Wang G, et al. Vision sensing and feedback control of weld penetration in helium arc welding process[J]. Journal of Manufacturing Processes, 2021, 72: 168 − 178.
    [5]
    肖宏, 宋建岭, 刘宪力, 等. 基于形态学算法的2219铝合金钨极氦弧焊熔池图像特征提取[J]. 宇航材料工艺, 2019, 49(1): 78 − 81. doi: 10.12044/j.issn.1007-2330.2019.01.015

    Xiao Hong, Song Jianling, Chang Baohua, et al. Image feature extraction of helium gas tungsten arc welding pool of 2219 aluminum alloy based on morphological algorithm[J]. Aerospace Materials & Technology, 2019, 49(1): 78 − 81. doi: 10.12044/j.issn.1007-2330.2019.01.015
    [6]
    Hong Y, Yang M, Chang B, et al. Filter-PCA-based process monitoring and defect identification during climbing helium arc welding process using DE-SVM[J]. IEEE Transactions on Industrial Electronics, 2023, 70(7): 7353 − 7362.
    [7]
    Chen C, Lv N, Chen S. Welding penetration monitoring for pulsed GTAW using visual sensor based on AAM and random forests[J]. Journal of Manufacturing Processes, 2021, 63: 152 − 162.
    [8]
    洪宇翔, 杨明轩, 都东, 等. 铝合金爬坡TIG焊熔池失稳状态的视觉检测[J]. 焊接学报, 2021, 42(10): 8 − 13.

    Hong Yuxiang, Yang Mingxuan, Du Dong, et al. Unstable state vision detection of molten pool during aluminum alloy climbing-TIG welding[J]. Transactions of the China Welding Institution, 2021, 42(10): 8 − 13.
    [9]
    马晓锋, 夏攀, 刘海生, 等. 全位置焊接熔池的深度学习检测方法[J]. 机械工程学报, 2023, 59(12): 272 − 283. doi: 10.3901/JME.2023.12.272

    Ma Xiaofeng, Xia Pan, Liu Haisheng, et al. Deep learning detection method of all-position welding pool[J]. Journal of Mechanical Engineering, 2023, 59(12): 272 − 283. doi: 10.3901/JME.2023.12.272
    [10]
    Cai W, Jiang P, Shu L, et al. Real-time identification of molten pool and keyhole using a deep learning-based semantic segmentation approach in penetration status monitoring[J]. Journal of Manufacturing Processes, 2022, 76: 695 − 707.
    [11]
    李春凯, 王嘉昕, 石玗, 等. GTAW熔池激光条纹动态行为与熔透预测方法研究[J]. 机械工程学报: 1-9.

    Li Chunkai, Wang Jiaxin, Shi Yu, et al. Study on the dynamic behavior of GTAW melt pool laser streak and penetration prediction method[J]. Journal of Mechanical Engineering, 1–9.
    [12]
    Wang Q, Jiao W, Wang P, et al. A tutorial on deep learning-based data analytics in manufacturing through a welding case study[J]. Journal of Manufacturing Processes, 2021, 63: 2 − 13.
    [13]
    Cheng Y, Wang Q, Jiao W, et al. Detecting dynamic development of weld pool using machine learning from innovative composite images for adaptive welding[J]. Journal of Manufacturing Processes, 2020, 56: 908 − 915.
    [14]
    刘秀航, 叶广文, 黄宇辉, 等. 激光-MIG复合焊根部驼峰缺陷预测[J]. 焊接学报, 2022, 43(12): 47 − 52,99. doi: 10.12073/j.hjxb.20211216003

    Liu Xiuhang, Ye Guangwen, Huang Yuhui, et al. Root hump defect prediction for laser-MIG hybrid welding[J]. Transactions of the China Welding Institution, 2022, 43(12): 47 − 52,99. doi: 10.12073/j.hjxb.20211216003
    [15]
    Jiao W, Wang Q, Cheng Y, et al. Prediction of weld penetration using dynamic weld pool arc images[J]. Weld J, 2020, 99(11): 295S − 302S.
    [16]
    Gao P, Wu Z, Wang Y, et al. Method for monitoring and controlling penetration of complex groove welding based on online multi-modal data[J]. Journal of Intelligent Manufacturing, 2023.
    [17]
    Wu D, Hu M, Huang Y, et al. In situ monitoring and penetration prediction of plasma arc welding based on welder intelligence-enhanced deep random forest fusion[J]. Journal of Manufacturing Processes, 2021, 66: 153 − 165.
    [18]
    Liu T, Bao J, Zheng H, et al. Learning semantic-specific visual representation for laser welding penetration status recognition[J]. Science China Technological Sciences, 2022, 65(2): 347 − 360. doi: 10.1007/s11431-021-1848-7
  • Related Articles

    [1]LUO Jingyue, LI Xiaobo, LIU Xiaochao, SHI Lei, SHEN Zhikang, PEI Xianjun, NI Zhonghua. Effect of tool rotation speed on microstructure and mechanical properties of Al/steel vortex flow-based friction stir lap welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(2): 127-135. DOI: 10.12073/j.hjxb.20240906002
    [2]DONG Shaokang, MA Yuhang, ZHU Hao, WANG Chenji, CAO Zhilong, WANG Jun. Effect of Ni interlayer on microstructure of aluminum/magnesium dissimilar metal friction stir welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 84-89. DOI: 10.12073/j.hjxb.20211202002
    [3]XU Xinxin, LIANG Xiaoguang, YANG Ruisheng, YAN Dongyang, ZHOU Li. Effect of welding residual stress on bearing capacity of fusion welded joint of 2219 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 17-22. DOI: 10.12073/j.hjxb.20200403004
    [4]ZHAO Zhili<sup>1</sup>, WANG Guanglin<sup>1</sup>, ZHANG Yuanjian<sup>1</sup>, FANG Hongyuan<sup>2</sup>. Homogenization capacity of welding residual stress in under-matching ELCC butt joint of high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 111-114. DOI: 10.12073/j.hjxb.2018390186
    [5]QIAO Guiying, LIU Yumeng, HAN Xiulin, WANG Xu, XIAO Furen. Simulation study on effects of geometry size of weld joint on bearing capacity of steel pipe[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(3): 33-36.
    [6]LIU Yong, WANG Ping, MA Ran, DONG Pingsha, FANG Hongyuan. Fatigue property of aluminum non-load bearing cruciform joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 83-86.
    [7]LIN Yitong, WANG Dongpo, WANG Ying. Effect of welding on bearing capacity of launch vehicle tank based on Neuber formula[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(1): 51-54.
    [8]ZHAO Zhili, FANG Hongyuan, YANG Jianguo, XU Xiaojun, HU Jichao. A design method of equal load-carrying capacity for undermatching weld joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (4): 87-90.
    [9]ZHANG Deku, WANG Kehong, ZHANG Jing, ZHAO Nan. Effect of process parameters on strengthening of steel surface with Fe-Al intermetallic compounds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (12): 85-88.
    [10]GUI Chibin, WANG Zheng, WEN Jiancheng. Hydrogen dissolving capacity in slag and diffusible hydrogen in deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 54-56.
  • Cited by

    Periodical cited type(2)

    1. 杨泽坤,徐锴,杨战利,张焱,费大奎,周坤,杨永波. 缆式焊丝GMAW焊缝截面侧偏行为机理分析. 焊接学报. 2024(01): 83-87+134 . 本站查看
    2. 赵文勇,胥国祥. 基于数值模拟技术的焊接结构学课程教学改革研究. 造纸装备及材料. 2024(11): 254-256 .

    Other cited types(7)

Catalog

    Article views (8) PDF downloads (0) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return