Advanced Search
WU Baosheng, LI Peng, MA Yueting, DONG Honggang. Vacuum diffusion bonding of TC4 titanium alloy to T2 copper with VCrAl1.21Ni0.93Co1.85 high entropy alloy interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(9): 1-13. DOI: 10.12073/j.hjxb.20230905001
Citation: WU Baosheng, LI Peng, MA Yueting, DONG Honggang. Vacuum diffusion bonding of TC4 titanium alloy to T2 copper with VCrAl1.21Ni0.93Co1.85 high entropy alloy interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(9): 1-13. DOI: 10.12073/j.hjxb.20230905001

Vacuum diffusion bonding of TC4 titanium alloy to T2 copper with VCrAl1.21Ni0.93Co1.85 high entropy alloy interlayer

More Information
  • Received Date: September 04, 2023
  • Available Online: June 19, 2024
  • VCrAl1.21Ni0.93Co1.85 eutectic high entropy alloy interlayer was designed based on the pseudo-binary strategy and design concept of eutectic high entropy alloy, which was used to join TC4 titanium alloy and T2 copper via vacuum diffusion bonding. The influence of bonding temperature on the microstructure and mechanical property of TC4/T2 diffusion bonded joint was investigated. The results showed that all the joint were well combined without defects. TC4 titanium alloy adjacent to the diffusion layer underwent a phase transition from α-Ti to β-Ti, forming part of the Widmanstatten structure. Ti2(Co, Ni), Ti2(V, Cr, Al), Ti(V, Cr, Co) and (V, Cr)(Al, Ni, Co) phases appeared in the TC4/VCrAl1.21Ni0.93Co1.85 interface while (V, Cr)(Al, Ni, Co) and (V, Cr)(Cu, Ni, Co)3 phases formed in the VCrAl1.21Ni0.93Co1.85/T2 interface. The high entropy microstructure formed in the interface, which played the role of high entropy solution strengthening. The growth activation energy of diffusion layer I and II was 229 kJ/mol and 191 kJ/mol, respectively. The maximum shear strength of joint at 880 ℃ reached 194 MPa. The joint fracture was mainly along the BCC matrix phase and B2 phase alternately, and the fracture surface had the feature of river pattern, which belonged to a typical cleavage fracture mode.

  • [1]
    王猛, 张立平, 赵琳瑜, 等. 增材制造和锻造TC11钛合金激光焊接头组织与力学性能[J]. 焊接学报, 2023, 44(10): 102 − 110. doi: 10.12073/j.hjxb.20221114001

    Wang Meng, Zhang Liping, Zhao Linyu, et al. Comparative study on the microstructure and mechanical properties of the laser welded joints of additive manufactured and forged TC11 titanium alloy[J]. Transactions of the China Welding Institution, 2023, 44(10): 102 − 110. doi: 10.12073/j.hjxb.20221114001
    [2]
    Xiao J, Lei Y D, Chen S J, et al. Weld deformation control based on programmable multi-point flexible support[J]. China Welding, 2022, 31(3): 30 − 34.
    [3]
    毕志雄, 李雪交, 吴勇, 等. 钛箔/钢爆炸焊接的界面结合性能[J]. 焊接学报, 2022, 43(3): 81 − 85. doi: 10.12073/j.hjxb.20211105002

    Bi Zhixiong, Li Xuejiao, Wu Yong, et al. Interfacial bonding properties of titanium foil/steel explosive welding[J]. Transactions of the China Welding Institution, 2022, 43(3): 81 − 85. doi: 10.12073/j.hjxb.20211105002
    [4]
    沈元勋, 王路乙, 李秀朋, 等. 钨铜/铍青铜异质钎焊界面组织与性能[J]. 焊接学报, 2022, 43(3): 50 − 54. doi: 10.12073/j.hjxb.20211025001

    Shen Yuanxun, Wang Luyi, Li Xiupeng, et al. Microstructure and properties of brazed W-Cu composites and beryllium bronze joint[J]. Transactions of the China Welding Institution, 2022, 43(3): 50 − 54. doi: 10.12073/j.hjxb.20211025001
    [5]
    Huang L B, Dong H G, Ma Y T, et al. Interfacial layer regulation and its effect on mechanical properties of Ti6Al4V titanium alloy and T2 copper dissimilar joints by cold metal transfer welding[J]. Journal of Manufacturing Processes, 2022, 75: 1100 − 1110. doi: 10.1016/j.jmapro.2022.01.056
    [6]
    Yusefi A, Kokabi A H, Abedini R, et al. Microstructure evolution and mechanical properties analysis in dissimilar ultrasonic metal welding of aluminum to copper[J]. Journal of Materials Research and Technology, 2024, 30: 2922 − 2935. doi: 10.1016/j.jmrt.2024.04.037
    [7]
    Cao R, Feng Z, Lin Q, et al. Study on cold metal transfer welding–brazing of titanium to copper[J]. Materials & Design, 2014, 56: 165 − 173.
    [8]
    Cao R, Feng Z, Chen J H. Microstructures and properties of titanium–copper lap welded joints by cold metal transfer technology[J]. Materials & Design, 2014, 53: 192 − 201.
    [9]
    Wang Q, Zhang K, Niu W J. Microstructural characteristic and mechanical properties of titanium-copper alloys in-situ fabricated by selective laser melting[J]. Journal of Alloys and Compounds, 2021, 885: 161032. doi: 10.1016/j.jallcom.2021.161032
    [10]
    Zhao Y, Wang W Y, Yan K, et al. Microstructure and properties of Cu/Ti laser welded joints[J]. Journal of Materials Processing Technology, 2018, 257: 244 − 249. doi: 10.1016/j.jmatprotec.2018.03.001
    [11]
    Guo S, Zhou Q, Peng Y, et al. Study on strengthening mechanism of Ti/Cu electron beam welding[J]. Materials & Design, 2017, 121: 51 − 60.
    [12]
    Chen G Q, Zhang B G, Liu W, et al. Influence of electron-beam superposition welding on intermetallic layer of Cu/Ti joint[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(10): 2416 − 2420. doi: 10.1016/S1003-6326(11)61479-9
    [13]
    Shiue R K, Wu S K, Chan C H. The interfacial reactions of infrared brazing Cu and Ti with two silver-based braze alloys[J]. Journal of Alloys and Compounds, 2004, 372(1-2): 148 − 157.
    [14]
    Shiue R K, Wu S K, Chan C H. Infrared brazing Cu and Ti using a 95Ag-5Al braze alloy[J]. Metallurgical & Materials Transactions A, 2004, 35(10): 3177 − 3186.
    [15]
    Kimura M. Effect of friction pressure on joining phenomena of friction welds between pure titanium and pure copper[J]. Science and Technology of Welding and Joining, 2011, 16(5): 392 − 399. doi: 10.1179/1362171811Y.0000000009
    [16]
    Meshram S D, Mohandas T, Reddy G M. Friction welding of dissimilar pure metals[J]. Journal of Materials Processing Technology, 2007, 184(1-3): 330 − 337. doi: 10.1016/j.jmatprotec.2006.11.123
    [17]
    Kahramana N, Gulenc B, Microstructural and mechanical properties of Cu-Ti plates bonded through explosive welding process [J]. Journal of Materials Processing Technology, 2005, 169: 67-71.
    [18]
    Song Minxiao, Zhao Xihua, Guo Wei, et al. Diffusion bonding of Ti-6Al-4V to ZQSn10-10 in vacuum[J]. China Welding, 2007, 12(1): 1 − 5.
    [19]
    Aydin K, Kaya Y, Kahraman N. Experimental study of diffusion welding/bonding of titanium to copper[J]. Materials & Design, 2012, 37(5): 356 − 368.
    [20]
    Guo W, Zhao X H, Song M X, et al. Diffusion bonded transition joint of TC4 to QAl10-3-1.5[J]. China Welding, 2005, 14(2): 109 − 112.
    [21]
    Wu B S, Dong H G, Li P, et al. Vacuum diffusion bonding of TC4 titanium alloy and T2 copper by a slow cooling heat treatment[J]. Journal of Materials Processing Technology, 2022, 305: 117595. doi: 10.1016/j.jmatprotec.2022.117595
    [22]
    Li P, Li C, Dong H G, et al. Vacuum diffusion bonding of TC4 titanium alloy to 316L stainless steel with AlCoCrCuNi2 high-entropy alloy interlayer[J]. Journal of Alloys and Compounds, 2022, 909: 164698. doi: 10.1016/j.jallcom.2022.164698
    [23]
    Lei Y, Hu S P, Yang T L, et al. Vacuum diffusion bonding of high-entropy Al0.85CoCrFeNi alloy to TiAl intermetallic[J]. Journal of Materials Processing Technology, 2020, 278: 116455. doi: 10.1016/j.jmatprotec.2019.116455
    [24]
    Du Y J, Xiong J T, Jin F, et al. Microstructure evolution and mechanical properties of diffusion bonding Al5(TiZrHfNb)95 refractory high entropy alloy to Ti2AlNb alloy[J]. Materials Science & Engineering A, 2021, 802: 140610.
    [25]
    刘玉林. 高熵合金与铝、铜及不锈钢异种材料扩散焊研究[D]. 兰州: 兰州理工大学, 2016.

    Liu Yulin. The study of diffusion welding of high entropy alloy with aluminum, copper and stainless steel[D]. Lanzhou: Lanzhou University of Technology, 2016.
    [26]
    Ding W, Liu N, Fan J C, et al. Diffusion bonding of copper to titanium using CoCrFeMnNi high-entropy alloy interlayer[J]. Intermetallics, 2021, 129: 107027. doi: 10.1016/j.intermet.2020.107027
    [27]
    Jin X, Zhou Y, Zhang L, et al. A new pseudo binary strategy to design eutectic high entropy alloys using mixing enthalpy and valence electron concentration[J]. Materials & Design, 2018, 143: 49 − 55.
    [28]
    Jiang H, Han K M, Gao X X, et al. A new strategy to design eutectic high-entropy alloys using simple mixture method[J]. Materials & Design, 2018, 142: 101 − 105.
    [29]
    Liu Y, Luo Y, Zhao D, et al. Interfacial behavior and joint performance of high-entropy alloy CoCrFeMnNi and pure Cu joints obtained by vacuum diffusion welding[J]. Journal of Mechanical Engineering, 2017, 53(2): 84 − 91. doi: 10.3901/JME.2017.02.084
    [30]
    Li P, Sun H T, Dong H G, et al. Microstructural evolution, bonding mechanism and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy joint fabricated via diffusion bonding[J]. Materials Science & Engineering, A, 2021, 814: 141211.
    [31]
    Hawkyard J B, Eaton D, Johnson W. The mean dynamic yield strength of copper and low carbon steel at elevated temperatures from measurements of the "mushrooming" of flat-ended projectiles[J]. International Journal of Mechanical Sciences, 1968, 10(12): 929 − 930. doi: 10.1016/0020-7403(68)90048-9
    [32]
    Yeh J W. Alloy design strategies and future trends in high-entropy alloys[J]. JOM, 2013, 65(12): 1759 − 1771. doi: 10.1007/s11837-013-0761-6
    [33]
    孙浩田. AlCoCrFeNi2.1高熵合金扩散连接工艺及机理研究[D]. 大连: 大连理工大学, 2021.

    Sun Haotian. Process and mechanism for diffusion bonding of AlCoCrFeNi2.1 high entropy alloy[D]. Dalian: Dalian University of Technology, 2021.
  • Related Articles

    [1]ZHANG Yukun, CHEN Jichun, ZHANG Jinsong. Microstructure and shear strength of the C/SiC and Q235 brazing joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(7): 78-82. DOI: 10.12073/j.hjxb.20191010001
    [2]WANG Hongna, YAN Yanfu, MA Shitao, QI Xuefeng, LIU Shuying. Effect of rare earth element (La,Nb) on hardness of Ti15Cu15Ni filler metal and shear strength of TC4 joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(11): 99-103.
    [3]LIU Deyi, CAI Jianwei, REN Ruiming. Microstructure and properties of diffusion bonded interface of titanium-copper interlayer-carbon steel composite tube[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 49-52.
    [4]LI Haixin, LIN Tiesong, HE Peng, FENG Jicai, WANG Xianjun. Diffusion bonding joint of TiAl-based alloy and Ni-based alloy by using composite interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (11): 51-54.
    [5]LI Zhuoran, YU Kang, LIU Bing, FENG Jicai. Microstructure and properties of GH4169 vacuum diffusion bonded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (11): 13-16.
    [6]MENG Gongge, LI Zhengping. Shear strength and fracture surface analysis of BiAgNiCuGe/Cujoint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (10): 45-48.
    [7]WANG Juan, LI Yajiang, S. A. GERASIMOV. Microstructure and shear strength of diffusion brazed Al2O3-TiC/Q235 joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 25-28.
    [8]LI Zhuoran, LIU Bin, FENG Jicai. Effect of Ni on wettability and shear strength of joints of Ag20CuZnSnP filler metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (9): 19-22.
    [9]XUE Song-bai, HU Yong-fang, YU Sheng-lin, WU Yu-xiu. Effects of thermal cycling on shear strength and microstructures of soldered joints of ceramic ball grid array package[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (6): 1-4.
    [10]WANG Juan, LI Ya-jiang, LIU Peng. Shear strength and microstructure in Fe3Al/Q235 diffusion bonded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (5): 81-84.

Catalog

    Article views (267) PDF downloads (97) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return