Advanced Search
WANG Juan, LI Yajiang, S. A. GERASIMOV. Microstructure and shear strength of diffusion brazed Al2O3-TiC/Q235 joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 25-28.
Citation: WANG Juan, LI Yajiang, S. A. GERASIMOV. Microstructure and shear strength of diffusion brazed Al2O3-TiC/Q235 joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 25-28.

Microstructure and shear strength of diffusion brazed Al2O3-TiC/Q235 joint

More Information
  • Received Date: December 17, 2007
  • An Al2O3-TiC/Q235 joint, Al2O3-TiC ceramic composite with steel Q235, was obtained by diffusion brazing in vacuum, using a combination of Ti and Cu as multi-interlayer.The interfacial strength was measured by shear testing and the result was explained by the fracture morphology.Microstructure of the Al2O3-TiC/Q235 joint was investigated by scanning electron microscope (SEM), energy-dispersion spectroscopy (EDS)and X-ray diffraction (XRD).The results indicate that the Al2O3-TiC/Q235 joint with a shear strength of 122 MPa can be obtained by controlling heating temperature at 1 110℃, multi-interlayer Ti/Cu/Ti is fused fully and diffused reaction to produce an obvious interfacial transition zone with a thickness of about 80 μm, and there are Ti3AlC2, Fe2Ti, Cu and TiC in the transition zone.
  • Related Articles

    [1]YAO Ping, LI Wenqiang, CHEN Wei, HE Riheng, ZHANG Peimei, ZHANG Guangchao. Prediction of weld size prediction based on Whale Optimization Algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 133-139. DOI: 10.12073/j.hjxb.20240701001
    [2]XIE Fei, ZHU Tengfei, YANG Jiquan, YU Shengfu, SHI Jianjun, LIU Yijian. Detection method of molten pool shape based on additional loss function of edge included angle[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 82-90. DOI: 10.12073/j.hjxb.20201106001
    [3]JIA Jinlong, ZHAO Yue, DONG Mingye, WU Aiping, LI Quan. Numerical simulation on residual stress and deformation for WAAM parts of aluminum alloy based on temperature function method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 1-6. DOI: 10.12073/j.hjxb.2019400226
    [4]ZOU Yuanyuan, ZUO Kezhu, FANG Lingshen, LI Pengfei. Recognition of weld seam for tailored blank laser welding based on least square support vector machine[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 77-81. DOI: 10.12073/j.hjxb.2019400046
    [5]WANG Teng, GAO Xiangdong. Prediction algorithm of molten pool width based on support vector machine during high-power disk laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (5): 25-28.
    [6]WANG Feifan, LI Wenya, LIU Wei. Prediction of axial shortening in inertia friction welding by RBF and SVM methods[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (3): 85-88.
    [7]XU Fujia, LÜ Yaohui, LIU Yuxin, XU Binshi, HE Peng. Prediction model of bead geometry shaped by rapid prototyping based on pulsed PAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (1): 49-52.
    [8]ZHANG Hongjie, HOU Yanyan. Quality estimation of resistance spot welding based on kernel fisher discriminant analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (6): 105-108.
    [9]ZENG Songsheng, WANG Guorong, SHI Yonghua, HUANG Guoxing. Arc sensor seam offset identification system based on LabVIEW and support vector regression machine[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 13-16.
    [10]LIU Pengfei, SHAN Ping, LUO Zhen. Detection method of spot welding based on fractal and support vector machine[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 38-42.

Catalog

    Article views (285) PDF downloads (123) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return