Processing math: 100%
Advanced Search
ZHANG Xiaodan, BAI Shi, LIU Zhiyao, LIN Yuxi, HUANG Ping, ZHENG Fuyin. Multi-channel multi-frequency eddy current detection of lithium battery welds in aviation field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 85-94. DOI: 10.12073/j.hjxb.20230809002
Citation: ZHANG Xiaodan, BAI Shi, LIU Zhiyao, LIN Yuxi, HUANG Ping, ZHENG Fuyin. Multi-channel multi-frequency eddy current detection of lithium battery welds in aviation field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 85-94. DOI: 10.12073/j.hjxb.20230809002

Multi-channel multi-frequency eddy current detection of lithium battery welds in aviation field

More Information
  • Received Date: August 08, 2023
  • Available Online: June 21, 2024
  • In order to realize the efficient and accurate detection of laser welds of aviation lithium battery, a multi-channel multi-frequency eddy current detection system with the function of tomographic imaging was designed and developed. The system and the 5-channel anti-interference differential structure eddy current sensor were used to detect the typical defects in the tab polar plate weld, such as local incomplete welding, overall missing welding, weld deformation and concave, and micro defect. Based on the principle of skin effect, tomographic imaging technology was used to scan and image the overlap. The results show that the developed multi-channel multi-frequency eddy current detection system with the function of tomographic imaging can effectively detect a variety of typical defects in the tab polar plate weld of lithium batteries, and the smallest defects can be detected at ϕ1 mm. The tomographic imaging technology enables the observation of defect morphology at different depths. Through the comparative analysis of a large number of test results, the identification methods of defect type, location and length were summarized, and a set of defect identification process and evaluation criteria were proposed, which laid a good foundation for the engineering realization of the lithium battery weld detection.

  • [1]
    贾志杰, 高峰, 杜世伟, 等. 磷酸铁锂电池不同应用场景的生命周期评价[J]. 中国环境科学, 2022, 42(4): 1975 − 1984. doi: 10.3969/j.issn.1000-6923.2022.04.055

    Jia Zhijie, Gao Feng, Du Shiwei, et al. Life cycle assessment of lithium iron phosphate battery in different utilization scenarios[J]. Chinese Environmental Science, 2022, 42(4): 1975 − 1984. doi: 10.3969/j.issn.1000-6923.2022.04.055
    [2]
    刘国刚, 陈龙, 黄昊鹏, 等. 锂电池高纯氧化铝的制备及应用研究进展[J]. 电源技术, 2023, 47(4): 421 − 425.

    Liu Guogang, Chen Long, Huang Haopeng, et al. Research progress on preparation of high purity alumina and its application in lithium battery[J]. Power Technology, 2023, 47(4): 421 − 425.
    [3]
    张世超, 沈泽宇, 陆盈盈. 金属锂电池的热失控与安全性研究进展[J]. 物理化学学报, 2021, 37(1): 55 − 72.

    Zhang Shichao, Shen Zeyu, Lu Yingying. Research progress of thermal runaway and safety for lithium metal batteries[J]. Journal of Physical Chemistry, 2021, 37(1): 55 − 72.
    [4]
    Feng X N, Zheng S Q, Ren D S, et al. Key characteristics for thermal runaway of Li-ion batteries[J]. Energy Procedia, 2019, 158: 4684 − 4689.
    [5]
    Wang Q S, Mao B B, Stoliarov S I, et al. A review of lithium- ion battery failure mechanisms and fire prevention strategies[J]. Prog Energy Combust Science, 2019, 73: 95 − 131. doi: 10.1016/j.pecs.2019.03.002
    [6]
    杨传礼, 张修庆. 基于机器视觉和深度学习的材料缺陷检测应用综述[J]. 材料导报, 2022, 36(16): 222 − 230. doi: 10.11896/cldb.20070136

    Yang Chuanli, Zhang Xiuqing. Survey of applications of material defect detection based on machine vision and deep learning[J]. Material Guide, 2022, 36(16): 222 − 230. doi: 10.11896/cldb.20070136
    [7]
    王露. 基于机器视觉的锂电池极片缺陷检测与分类系统 [D]. 西安: 西安科技大学, 2020.

    Wang Lu. Defect detecting and classification system of the lithium battery pole piece based on machine vision[D]. Xi 'an: Xi 'an University of Science and Technology, 2020.
    [8]
    王诗文. 锂电池极耳焊接缺陷的自动光学检测研究 [D]. 哈尔滨: 哈尔滨工业大学, 2017.

    Wang Shiwen. Automated optical inspection of tabs welding defects in lithium batteries[D]. Harbin: Harbin Institute of Technology, 2017.
    [9]
    黄锴. 基于超声波成像技术的锂离子电池电解液浸润性研究 [D]. 武汉: 华中科技大学, 2019.

    Huang Kai. Study on filling process of lithium-ion battery electrolyte based on ltrasonic imaging[D]. Wuhan: Huazhong University of Science and Technology, 2019.
    [10]
    邓哲. 锂电池超声扫描成像技术及其应用 [D]. 武汉: 华中科技大学, 2021.

    Deng Zhe. A thesis submitted in partial fulfillment of the requirements for the degree of doctor of philosophy in engineering[D]. Wuhan: Huazhong University of Science and Technology, 2021.
    [11]
    邬冠华, 熊鸿建. 中国射线检测技术现状及研究进展[J]. 仪器仪表学报, 2016(8): 1683 − 1695. doi: 10.3969/j.issn.0254-3087.2016.08.001

    Wu Guanhua, Xiong Hongjian. Radiography testing in China[J]. Chinese Journal of Instrument, 2016(8): 1683 − 1695. doi: 10.3969/j.issn.0254-3087.2016.08.001
    [12]
    马天翼, 苏素, 张宗, 等. 计算机断层扫描技术在锂离子电池检测中的应用研究[J]. 重庆理工大学学报, 2020, 34(2): 133 − 139. doi: 10.3969/j.issn.1674-8425(z).2020.02.019

    Ma Tianyi, Su Su, Zhang Zong, et al. Application of computed tomography in lithiumion battery detection[J]. Journal of Chongqing University of Technology, 2020, 34(2): 133 − 139. doi: 10.3969/j.issn.1674-8425(z).2020.02.019
    [13]
    Zhang Kai, Ren Fang, Wang Xuelong, et al. Finding a needle in the haystack: Identification of functionally important minority phases in an operating battery[J]. Nano letters, 2017, 17(12): 7782 − 7788. doi: 10.1021/acs.nanolett.7b03985
    [14]
    南京奥科特创智能科技有限公司. 一种基于超声和红外探伤对锂电池的检测方法: CN202111090945.3[P]. 2022-01-07.

    Nanjing Aoke Chuang Intelligent Technology Co. , LTD. The invention relates to a detection method for lithium battery based on ultrasonic and infrared flaw detection: CN202111090945.3[P]. 2022-01-07.
    [15]
    王伟, 黄平, 周家宁, 等. 航空锂电池极耳焊缝微缺陷检测系统研究[J]. 无损探伤, 2023, 47(2): 4.

    Wang Wei, Huang Ping, Zhou Jianing, et al. Research on micro-defect detection system of tab welding seam of aviation lithium battery[J]. Non-destructive Testing, 2023, 47(2): 4.
    [16]
    周兆逸, 张亚南, 王肖锋, 等. 基于改正二维主成分分析的焊缝表面缺陷检测[J]. 焊接学报, 2021, 42(11): 70 − 76. doi: 10.12073/j.hjxb.20210412001

    Zhou Zhaoyi, Zhang Ya’nan, Wang Xiaofeng, et al. Weld surface defect detection based on improved twodimensional principal component analysis[J]. Transactions of the China Welding Institution, 2021, 42(11): 70 − 76. doi: 10.12073/j.hjxb.20210412001
  • Related Articles

    [1]WANG Rui, GAO Shaoze, LIU Weipeng, WANG Gang. A lightweight and efficient X-ray weld image defect detection method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(7): 41-49. DOI: 10.12073/j.hjxb.20230630003
    [2]CHI Dazhao, GUO Tao, ZHANG Runqi, ZHANG Tao, SHEN Hao. Study on real-time imaging detection of bonding defects by acoustic impedance method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 107-111. DOI: 10.12073/j.hjxb.20220702001
    [3]WANG Rui, HU Yunlei, LIU Weipeng, LI Haitao. Defect detection of weld X-ray image based on edge AI[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 79-84. DOI: 10.12073/j.hjxb.20210516001
    [4]GAO Xiangdong, XIE Yilong, CHEN Ziqin, YOU Deyong. Fractal feature detection of high-strength steel weld defects by magnetooptical imaging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 1-4. DOI: 10.12073/j.hjxb.20150803001
    [5]AO Bo, WANG Naibo, HE Shenyuan, DENG Cuizhen. Three dimensional imaging of internal defects in small diameter pipe welding seam by X-ray microtomography[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 11-14.
    [6]GAO Weixin, HU Yuheng, WU Xiaomeng. A new algorithm for detecting defects of sub-arc welding x-ray image based on compress sensor theory[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(11): 85-88.
    [7]LI Xueqin, LIU Peiyong, YIN Guofu, JIANG Honghai. Weld defect detection by X-ray images method based on Fourier fitting surface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(10): 61-64.
    [8]CHI Dazhao, GANG Tie, YAO Yingxue, YUAN Yuan. Defect detection for red copper weldment using ultrasonic method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (5): 21-24.
    [9]CHEN Ming, MA Yuezhou, CHEN Guang. Weld defects detection for X-ray linear array real-time imaging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 81-84.
    [10]CAI Guorui, DU Dong, TIAN Yuan, HOU Runshi, GAO Zhiling. Defect detection of X-ray images of weld using optimized heuristic search based on image information fusion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (2): 29-32.
  • Cited by

    Periodical cited type(5)

    1. 唐益爽,邹阳帆,李文亚,王卫兵,褚强,朱永山,汪庚. 协同双面搅拌摩擦焊接6061铝合金工艺. 电焊机. 2023(03): 72-76+110 .
    2. 回丽,李东澎,安金岚,崔浩,王坤宇. 连接工艺对铝合金搭接结构力学性能影响. 兵器材料科学与工程. 2022(03): 20-24 .
    3. 回丽,李东澎,宋万万,崔浩,安金岚,王坤宇. 腐蚀环境对搅拌摩擦点焊接结构力学性能的影响. 有色金属工程. 2022(06): 1-7 .
    4. 王方萍,柯展煌,赵英权,李志炜,李巧云,王炯铭,严洪,何秋婷. 一种U形结构换热器的制造技术. 压力容器. 2022(05): 83-88 .
    5. 徐锴,武鹏博,梁晓梅,陈健,黄瑞生. 铝合金激光-多股绞合焊丝MIG复合焊特性分析. 焊接学报. 2021(01): 16-23+98 . 本站查看

    Other cited types(1)

Catalog

    Article views (93) PDF downloads (38) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return