Advanced Search
CHI Dazhao, GUO Tao, ZHANG Runqi, ZHANG Tao, SHEN Hao. Study on real-time imaging detection of bonding defects by acoustic impedance method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 107-111. DOI: 10.12073/j.hjxb.20220702001
Citation: CHI Dazhao, GUO Tao, ZHANG Runqi, ZHANG Tao, SHEN Hao. Study on real-time imaging detection of bonding defects by acoustic impedance method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 107-111. DOI: 10.12073/j.hjxb.20220702001

Study on real-time imaging detection of bonding defects by acoustic impedance method

More Information
  • Received Date: July 01, 2022
  • Available Online: October 13, 2022
  • In order to detect the bonded structure defects effectively, an imaging inspection system based on acoustic impedance method is constructed. The system includes three parts: acoustic signal acquisition, acoustic probe positioning, data processing and imaging. Probe positions during dynamic scanning are collected using two rotary encoders. The defect data are collected using a Bonding Quality Detector. The data processing and image drawing programs are written in C++ language. The bonded sandwich structure of aluminum alloy/epoxy resin/aluminum alloy was tested using both acoustic impedance and conventional ultrasonic C-scan imaging methods, and the test results were compared and analyzed. The results show that the acoustic impedance based imaging method can identify defects in bonded structures more effectively, and single-sided testing can meet the needs of defect detection.
  • 王玉奇, 何晓聪, 曾凯, 等. 金属单搭胶接加强板接头力学性能分析[J]. 焊接学报, 2017, 38(5): 7 − 12. doi: 10.12073/j.hjxb.20170502

    Wang Yuqi, He Xiaocong, Zeng Kai, et al. Research of mechanical properties of adhesive bonding of single lap joints with reinforcements[J]. Transactions of the China Welding Institution, 2017, 38(5): 7 − 12. doi: 10.12073/j.hjxb.20170502
    Ren B, Lissenden C. Ultrasonic guided wave inspection of adhesive bonds between composite laminates[J]. International Journal of Adhesion and Adhesives, 2013, 45: 59 − 68. doi: 10.1016/j.ijadhadh.2013.04.001
    赵磊, 张丽霞, 田晓羽, 等. 石英纤维复合材料与因瓦合金的胶接辅助钎焊连接分析[J]. 焊接学报, 2010, 31(6): 49 − 52.

    Zhao Lei, Zhang Lixia, Tian Xiaoyu, et al. Active cement added brazing of quartz fibers reinforced silica composites to Invar alloy[J]. Transactions of the China Welding Institution, 2010, 31(6): 49 − 52.
    王铭茂, 陶汪, 马轶男, 等. 激光胶接复合点焊工艺特性[J]. 焊接学报, 2012, 33(7): 101 − 104.

    Wang Mingmao, Tao Wang, Ma Yinan, et al. Research on laser spot weld-bonding process characteristics[J]. Transactions of the China Welding Institution, 2012, 33(7): 101 − 104.
    王强, 毛捷, 李威, 等. 橡胶-钢粘接结构的谐振超声编码检测方法[J]. 机械工程学报, 2020, 56(20): 22 − 27. doi: 10.3901/JME.2020.20.022

    Wang Qiang, Mao Jie, Li Wei, et al. Resonant Ultrasonic Coded Method for Rubber-steel Bonded Structure[J]. Journal of Mechanical Engineering, 2020, 56(20): 22 − 27. doi: 10.3901/JME.2020.20.022
    Latifa A, Damien L, Mounsif E, et al. Detection of the degraded interface in dissymmetrical glued structures using Lamb waves[J]. NDT & E International, 2020, 111: 102213.
    Bengisu Y, Elena J. Advanced ultrasonic NDT for weak bond detection in composite-adhesive bonded structures[J]. International Journal of Adhesion and Adhesives, 2020, 102: 102675.
    Cawley P. The sensitivity of the mechanical impedance method of nondestructive testing[J]. NDT International, 1987, 20(4): 209 − 215. doi: 10.1016/0308-9126(87)90243-4
    Cawley P. The impedance method of non-destructive inspection[J]. NDT International, 1984, 17(2): 59 − 65. doi: 10.1016/0308-9126(84)90045-2
    Koleva M, Bechev C, Petkov S. Characterization of polyester resins solidification process by the method of mechanical impedance[J]. Polymer Testing, 2000, 19(5): 551 − 558.
    Lim M, Low S, Jiang L, et al. Dynamic characteristics of disbonds in honeycomb structures[J]. Engineering Structures, 1995, 17(1): 27 − 38.
    Hyeung Y, Woonbong H. Effect of debonding on natural frequencies and frequency response functions of honeycomb sandwich beams[J]. Composite Structures, 2002, 55(1): 51 − 62.
  • Related Articles

    [1]YUAN Mingxin, DAI Xianling, LIU Chao, SUN Hongwei, WANG Lei. Feature parameters extraction of ship welds based on spatial position and contour distance[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 84-92. DOI: 10.12073/j.hjxb.20211208002
    [2]HE Jianping, TAO Xuyang, JI Yongfeng. Dynamic distribution characteristic of temperature field and weld morphology control in pulsed microplasma arc welding ultra-thin sheets[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 67-73. DOI: 10.12073/j.hjxb.20200423001
    [3]WANG Angyang, HE Jianping, WANG Xiaoxia, LINYANG Shenlan. Distribution characteristics and parameters effects of MPLW arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(8): 77-81. DOI: 10.12073/j.hjxb.20151007002
    [4]JIANG Qixiang, ZOU Yirong, DU Dong. Spatial distribution measurement of gas tungsten arc current density based on image analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 101-104.
    [5]CHEN Haiyong, DU Xiaolin, DONG Yan. Tiny visual feature extraction of random changing weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 97-101.
    [6]SHI Duanhu, GANG Tie, YANG Feng. Automatic corresponding criterion of bulk defects in I style weldments[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (5): 53-56.
    [7]SHI Duanhu, GANG Tie, HUANG Chuanhui, YANG Genxi. Automated extraction of spatial locating data for bulk defects in double T joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (4): 69-72.
    [8]SHI Duan-hu, GANG Tie, YUAN Yuan. Spatial distribution features of weld defects in complex structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (11): 71-74.
    [9]SHI Yu-xiang, QIAO Ya-xia, Masahiro TOYOSADA. Distribution feature of welding aerosol particle size[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (1): 31-34.
    [10]Han Guoming, Li Junyue, Wu Zhao, Liu Gang. Distribution Feature of Welding Arc Ultraviolet Spestrum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (4): 213-218.
  • Cited by

    Periodical cited type(12)

    1. 汪孟杰,安康,祝贺,陈瑶,王李冬. 基于机器视觉技术的工业焊板焊缝位置检测系统. 物联网技术. 2025(01): 9-14+20 .
    2. 赵秋,唐琨,李英豪,林铮哲,陈鹏. 钢桥面板对接焊缝表面多缺陷疲劳效应研究. 铁道标准设计. 2024(03): 133-140+162 .
    3. 强伟,王克鸿,彭勇,袁银辉,路永新,董会. V形耦合双热源自熔焊接热-力分布特征. 稀有金属. 2024(04): 529-538 .
    4. 薛辰宇,石端虎,甄紫,孙远. 对接接头焊件射线检测图像焊缝区的自适应提取. 焊接技术. 2024(08): 106-110 .
    5. 陈晓明,王丽,马良,周峰,袁山山. 钢筋工程焊缝质量检测技术研究进展. 北京理工大学学报. 2024(12): 1215-1224 .
    6. 石端虎,吴三孩,历长云,赵洪枫,刚铁,何敏. 对接接头焊件缺陷空间定位及分布特征研究. 徐州工程学院学报(自然科学版). 2023(02): 55-62 .
    7. 董慧. 基于二元函数拟合的X射线焊缝图像缺陷分割方法. 焊接技术. 2023(07): 18-22 .
    8. 孙远,石端虎. T形接头角焊缝气孔缺陷空间位置数据的自动提取. 盐城工学院学报(自然科学版). 2023(02): 25-31 .
    9. 洪祥,张海越,宋骐. 基于图像识别的AH36钢激光焊缝节点定位技术研究. 计算机测量与控制. 2023(11): 299-305+314 .
    10. 蔡文龙,赵振,李文忠. 基于机器视觉的航空插头焊杯定位. 计算机仿真. 2022(06): 53-56 .
    11. 强伟,路永新,袁银辉,孙粲. T形接头冷丝填充双热源协同焊接数值模拟. 材料科学与工艺. 2021(05): 57-62 .
    12. 石端虎,吴三孩,历长云,沙静,孙远,杨峰. 对接接头焊件批量缺陷空间位置的可视化. 焊接. 2021(12): 48-52+66 .

    Other cited types(3)

Catalog

    Article views (294) PDF downloads (31) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return