Citation: | MIAO Xiaojun, HAN Lijuan, LI Kai, WANG Lei, JIANG Laihege, LIAO Wei, GAO Ming. Formation law and prediction of weld morphology for high-frequency oscillating laser-arc hybrid welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(7): 83-91. DOI: 10.12073/j.hjxb.20230711002 |
High-frequency oscillating laser-arc hybrid welding has been shown to control the microstructure and mechanical properties of the weld in aluminum alloy through the stirring effect. However, there is limited research on weld morphology control, thus hindering its industrial application. In this study, the effects of laser beam oscillating frequency (f) and amplitude (A) on the formation characteristics of laser-arc hybrid welding of AA6082 aluminum alloy were systematically investigated, particularly focusing on the influence of surface spatters, the width of the laser-affected zone beneath the weld, and the ratio of penetration depth. The formation mechanism of weld morphology was discussed based on the energy distribution characteristics of the oscillating laser beam and the transition of the laser welding mode. Subsequently, the optimization range of the oscillating parameters was determined based on the number of weld formation defects and the laser deep penetration welding mode, specifically within the range of 300 Hz ≤ f ≤ 500 Hz and 0.4 mm ≤ A ≤ 1.0 mm. Finally, by normalizing the oscillating parameters with the oscillating line velocity, a linear quantitative relationship between the characteristic values of the weld within the optimized parameter range was established with an accuracy of 89.8%, providing data support for the prediction and control of the morphological characteristics of high-frequency oscillating laser-arc hybrid welding.
[1] |
Heinz A, Haszler A, Keidel C, et al. Recent development in aluminium alloys for aerospace applications[J]. Materials Science and Engineering: A, 2000, 280(1): 102 − 107. doi: 10.1016/S0921-5093(99)00674-7
|
[2] |
周立涛, 王旭友, 王威, 等. 激光扫描焊接工艺对铝合金焊接气孔率的影响[J]. 焊接学报, 2014, 35(10): 65 − 68.
Zhou Litao, Wang Xuyou, Wang Wei, et al. Effects of laser scanning welding process on porosity rate of aluminum alloy[J]. Transactions of the China Welding Institution, 2014, 35(10): 65 − 68.
|
[3] |
Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys[J]. Materials and Design, 2014, 56: 862 − 871. doi: 10.1016/j.matdes.2013.12.002
|
[4] |
刘军, 孟宪国, 李晨曦, 等. 2219-T651铝合金激光摆动焊接接头微观组织和力学性能[J]. 焊接学报, 2023, 44(4): 7 − 13. doi: 10.12073/j.hjxb.20220507001
Liu Jun, Meng Xianguo, Li Chenxi, et al. Microstructure and properties of 2219-T651 aluminum alloy welded joint by laser oscillating welding[J]. Transactions of the China Welding Institution, 2023, 44(4): 7 − 13. doi: 10.12073/j.hjxb.20220507001
|
[5] |
Liu T, Mu Z, Hu R, et al. Sinusoidal oscillating laser welding of 7075 aluminum alloy: Hydrodynamics, porosity formation and optimization[J]. International Journal of Heat and Mass Transfer, 2019, 140: 346 − 358. doi: 10.1016/j.ijheatmasstransfer.2019.05.111
|
[6] |
余世文, 周昆, 张威, 等. 6.0mm厚5183铝合金激光摆动焊接工艺研究[J]. 激光技术, 2018, 42(2): 254 − 258. doi: 10.7510/jgjs.issn.1001-3806.2018.02.022
Yu Shiwen, Zhou Kun, Zhang Wei, et al. Laser-weaving welding of 5183 aluminum alloy plate with 6.0mm thickness[J]. Laser Technology, 2018, 42(2): 254 − 258. doi: 10.7510/jgjs.issn.1001-3806.2018.02.022
|
[7] |
Fetzer F, Sommer M, Weber R, et al. Reduction of pores by means of laser beam oscillation during remote welding of AlMgSi[J]. Optics and Lasers in Engineering, 2018, 108: 68 − 77. doi: 10.1016/j.optlaseng.2018.04.012
|
[8] |
Berend O, Haferkamp H, Meier O, et al. High-frequency beam oscillating to increase the process stability during laser welding with high melt pool dynamics[C]//International Congress on Applications of Lasers & Electro-Optics. AIP Publishing, 2005: 1032 − 1041.
|
[9] |
Hagenlocher C, Sommer M, Fetzer F, et al. Optimization of the solidification conditions by means of beam oscillation during laser beam welding of aluminum[J]. Materials & Design, 2018, 160: 1178 − 1185.
|
[10] |
Schultz V, Seefeld T, Vollertsen F. Gap bridging ability in laser beam welding of thin aluminum sheets[J]. Physics Procedia, 2014, 56: 545 − 553. doi: 10.1016/j.phpro.2014.08.037
|
[11] |
Wang L, Liu Y, Yang C, et al. Study of porosity suppression in oscillating laser-MIG hybrid welding of AA6082 aluminum alloy[J]. Journal of Materials Processing Technology, 2021, 292: 117053. doi: 10.1016/j.jmatprotec.2021.117053
|
[12] |
Cai C, Li L, Tao W, et al. Effects of weaving laser on scanning laser-MAG hybrid welding characteristics of high-strength steel[J]. Science and Technology of Welding and Joining, 2017, 22(2): 104 − 109. doi: 10.1080/13621718.2016.1199126
|
[13] |
Chen C, Xiang Y, Gao M. Weld formation mechanism of fiber laser oscillating welding of dissimilar aluminum alloys[J]. Journal of Manufacturing Processes, 2020, 60: 180 − 187. doi: 10.1016/j.jmapro.2020.10.050
|
[14] |
Meng Y, Lu Y, Li Z, et al. Effects of beam oscillation on interface layer and mechanical properties of laser-arc hybrid lap welded Al/Mg dissimilar metals[J]. Intermetallics, 2021, 133: 1 − 8.
|
[15] |
Wang Z, Oliveira J P, Zeng Z, et al. Laser beam oscillating welding of 5A06 aluminum alloys: Microstructure, porosity and mechanical properties[J]. Optics & Laser Technology, 2019, 111: 58 − 65.
|
[16] |
Hao K, Li G, Gao M, et al. Weld formation mechanism of fiber laser oscillating welding of austenitic stainless steel[J]. Journal of Materials Processing Technology, 2015, 225: 77 − 83. doi: 10.1016/j.jmatprotec.2015.05.021
|
[17] |
Wang L, Gao M, Zeng X. Experiment and prediction of weld morphology for laser oscillating welding of AA6061 aluminium alloy[J]. Science and Technology of Welding and Joining, 2019, 24(4): 334 − 341. doi: 10.1080/13621718.2018.1551853
|
[18] |
Ono M, Shinbo Y, Yoshitake A, et al. Development of laser-arc hybrid welding[J]. NKK Technical Review, 2002, 86: 70 − 74.
|
[19] |
Acherjee B. Hybrid laser arc welding: State-of-art review[J]. Optics & Laser Technology, 2018, 99: 60 − 71.
|
[20] |
Zhang C, Gao M, Wang D Zh, et al. Relationship between pool characteristic and weld porosity in laser arc hybrid welding of AA6082 aluminum alloy[J]. Journal of Materials Processing Technology, 2017, 240: 217 − 222. doi: 10.1016/j.jmatprotec.2016.10.001
|
[21] |
Mahrle A, Beyer E. Modelling and simulation of the energy deposition in laser beam welding with oscillatory beam deflection[C]//Proceedings of the 26th International Congress on Applications of Lasers & Electro-Optics. LIA Publishing, 2007: 714 − 723.
|
[22] |
Zhang C, Yu Y, Chen C, et al. Suppressing porosity of a laser keyhole welded Al-6Mg alloy via beam oscillation[J]. Journal of Materials Processing Technology, 2020, 278: 116382. doi: 10.1016/j.jmatprotec.2019.116382
|
[1] | CAI Jiasi, WANG Wen, GAO Jianxin, JIN Hongxi, WEI Yanhong. Effect of oscillating laser welding parameters on energy distribution and joint forming of 5A06 thick plate aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 48-58. DOI: 10.12073/j.hjxb.20231105001 |
[2] | FANG Disheng, FAN Yuanyuan, HUANG Ruisheng, XU Fujia, PEI Liang, LI Jiashi. Microstructure and properties of thick 5A06 aluminum alloy by 10 kW level oscillated laser welding at vertical up position[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(6): 68-76. DOI: 10.12073/j.hjxb.20230614005 |
[3] | TONG Jiahui, HAN Yongquan, HONG Haitao, SUN Zhenbang. Mechanism of weld formation in variable polarity plasma arc-MIG hybrid welding of high strength aluminium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 69-72,91. DOI: 10.12073/j.hjxb.2018390125 |
[4] | CHEN Qihao, LIN Sanbao, YANG Chunli, FAN Chenglei. Analysis on Influencing Mechanism of Periodical Ultrasound on Formation of TIG Weld of Aluminum Alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(3): 9-12. |
[5] | HAN Yongquan, HONG Haitao, SHI Zengjie, YAO Qinghu. Mechanism of weld formation in laser beam-variable polarity plasma arc hybrid heating source welding of aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(12): 5-8. |
[6] | YAN Keng, GAO Lihua, YANG Gang, XIAO Hailin. Effect of single-component activating flux on weld morphologies in A-TIG welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (2): 54-57,62. |
[7] | YANG Jing, LI Xiaoyan, GONG Shuili, CHEN Li, XU Fei. Characteristics of aluminium-lithium alloy joint formed by YAG-MIG hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (2): 83-86. |
[8] | GAO Zhiguo, HUANG Jian, LI Yaling, WU Yixiong. Effect of relative position of laser beam and arc on formation of weld in laser-MIG hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 69-73. |
[9] | WANG Xuyou, WANG Wei, LIN Shangyang. Effect of welding parameter on weld penetration in laser-MIG hybrid welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (6): 13-16. |
[10] | YAO Wei, GONG Shui-li, CHEN Li. Effect of energy parameters on weld shaping for hybrid laser plasma welding of titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (9): 81-84. |